Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (3): 114-119    DOI: 10.13995/j.cnki.11-1802/ts.025441
  生产与科研应用 本期目录 | 过刊浏览 | 高级检索 |
不同蛋白酶制备藜麦麸皮多肽及其活性研究
林冰洁1, 薛鹏1,2, 荆金金1, 张若愚1, 季晓迎1, 韩彩静1,2*, 张丰香1,2*
1(潍坊医学院 公共卫生学院,山东 潍坊,261053)
2(潍坊市食品营养与安全重点实验室,山东 潍坊,261053)
Activity of polypeptides from Chenopodium quinoa husks prepared with different proteases
LIN Bingjie1, XUE Peng1,2, JING Jinjin1, ZHANG Ruoyu1, JI Xiaoying1, HAN Caijing1,2*, ZHANG Fengxiang1,2*
1(College of Public Health, Weifang Medical University, Weifang 261053, China)
2(Weifang Key Laboratory for Food Nutrition and Safety, Weifang 261053, China)
下载:  HTML   PDF (1641KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以藜麦麸皮为原料,利用高浓度乙醇粗提藜麦麸皮蛋白,并用4种蛋白酶(碱性、中性、复合、风味蛋白酶)酶解蛋白得到多肽。测定醇沉蛋白的分子质量分布、氨基酸组成以及4种蛋白酶的酶解能力和所得多肽的活性。结果表明,藜麦麸皮蛋白分子质量主要条带分布在22.8 k、39.1 k和52.7 kDa,其含有17种氨基酸,必需氨基酸/总氨基酸为35.17%,疏水性氨基酸/总氨基酸为28.48%。碱性蛋白酶对藜麦麸皮蛋白具有较高的水解能力,在120 min时达到13%,肽得率高达88.88%。风味蛋白酶酶解的多肽具有较好的α-葡萄糖苷酶抑制活性和Fe2+螯合能力,分别为81.67%和89.03%;碱性蛋白酶酶解的多肽对酪氨酸酶的抑制率达到73.17%;中性蛋白酶酶解的多肽对DPPH自由基清除能力较强,为84.91%。研究结果表明藜麦多肽具有良好的生物活性,为藜麦麸皮进一步开发利用提供了一定的理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
林冰洁
薛鹏
荆金金
张若愚
季晓迎
韩彩静
张丰香
关键词:  藜麦麸皮  多肽  蛋白  蛋白酶  生物活性    
Abstract: Quinoa husks protein was extracted by high concentration ethanol from quinoa husks, and the protein was hydrolyzed by four kinds of proteases (alkaline, neutral, compound and flavor protease) to produce polypeptides. The molecular weight distribution and amino acid composition of quinoa protein, the enzymatic hydrolysis ability of four proteases and the activities of the polypeptides were determined. The results showed that quinoa husks protein with molecular weight of 22.8 kDa, 39.1 kDa and 52.7 kDa contained 17 kinds of amino acids, and the ratios of essential amino acids and hydrophobic amino acids to total amino acids were 35.17% and 28.48%, respectively. The hydrolysis ability of alkaline protease for quinoa husks protein was the highest, with degree of hydrolysis reached 13% at 120 min, and the peptides yield was 88.88%. The peptides produced by flavor protease showed high α-glucosidase inhibitory activity and Fe2+ chelating ability, which were 81.67% and 89.03% respectively; the inhibition rate of alkaline protease produced peptides against tyrosinase was 73.17%, while neutral protease produced peptides had strong scavenging ability to DPPH free radicals, which was 84.91%. This study showed that quinoa peptides had good biological activities, which could provide a theoretical basis for further development and utilization of quinoa husks.
Key words:  quinoa husks    polypeptide    protein    protease    biological activity
收稿日期:  2020-08-21      修回日期:  2020-09-24           出版日期:  2021-02-15      发布日期:  2021-03-08      期的出版日期:  2021-02-15
基金资助: 山东省高等学校青创人才引育计划项目(2019-6-156)
作者简介:  硕士研究生(张丰香副教授和韩彩静讲师为共同通讯作者,E-mail:zfx0515@163.com;hancaijingsmile@163.com)
引用本文:    
林冰洁,薛鹏,荆金金,等. 不同蛋白酶制备藜麦麸皮多肽及其活性研究[J]. 食品与发酵工业, 2021, 47(3): 114-119.
LIN Bingjie,XUE Peng,JING Jinjin,et al. Activity of polypeptides from Chenopodium quinoa husks prepared with different proteases[J]. Food and Fermentation Industries, 2021, 47(3): 114-119.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.025441  或          http://sf1970.cnif.cn/CN/Y2021/V47/I3/114
[1] VEGA-GALVEZ A,MIRANADA M,VERGARA J,et al.Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.),an ancient Andean grain:A review[J].Journal of the Science of Food and Agriculture,2010,90(15):2 541-2 547.
[2] AYYASH M,JOHNSON S K,LIU S Q,et al.Cytotoxicity,antihypertensive,antidiabetic and antioxidant activities of solid-state fermented lupin,quinoa and wheat by Bifidobacterium species:In vitro investigations[J].LWT-Food Science and Technology,2018,95:295-302.
[3] 丁云双,曾亚文,闵康,等.藜麦功能成分综合研究与利用[J].生物技术进展,2015,5(5):340-346.
DING Y S,ZENG Y W,MIN K,et al.Comprehensive research and utilization of functional components in quinoa[J].Current Biotechnology,2015,5(5):340-346.
[4] 范三红,田旭静,张锦华.藜麦糠抗氧化肽的超滤分离及其体外抗氧化活性[J].食品工业科技,2018,39(5):59-64.
FAN S H,TIAN X J,ZHANG J H.The separation of the antioxidant peptide from quinoa chaff by ultrafiltration and its antioxidant activity in vitro[J].Science and Technology of Food Industry,2018,39(5):59-64.
[5] NONGONIERMA A B,LE M S,DUBRULLE C,et al.Quinoa (Chenopodium quinoa Willd.) protein hydrolysates with in vitro dipeptidyl peptidase IV (DPP-IV) inhibitory and antioxidant properties[J].Journal of Cereal Science,2015,65:112-118.
[6] 叶凯,李小强,周金虎,等.响应面法酶解藜麦蛋白制备α-淀粉酶抑制肽的工艺研究[J].中国调味品,2019,44(12):6-11.
YE K,LI X Q,ZHOU J H,et al.Study on enzymatic hydrolysis of quinoa protein for preparing α-amylase inhibitory peptide by response surface methodology[J].China Condiment,2019,44(12):6-11.
[7] VILCACUNDO R,MIRALLES B,CARRILLO W,et al.In vitro chemopreventive properties of peptides released from quinoa (Chenopodium quinoa Willd.) protein under simulated gastrointestinal digestion[J].Food Research International,2018,105:403-411.
[8] REN G X,ZHU Y,SHI Z,et al.Detection of lunasin in quinoa (Chenopodium quinoa Willd.) and the in vitro evaluation of its antioxidant and anti‐inflammatory activities[J]. Journal of the Science of Food and Agriculture,2017,97(12):4 110-4 116.
[9] ALUKO R E,MONU E.Functional and bioactive properties of quinoa seed protein hydrolysates[J].Journal of Food Science,2003,68(4):1 254-1 258.
[10] 赵雷,李晓娜,史龙龙,等.藜麦麸皮营养成分测定及其油脂的抗氧化活性研究[J].现代食品科技,2019,35(11):199-205;151.
ZHAO L,LI X N,SHI L L,et al.Determination of the nutritional components in quinoa bran and the antioxidant activity of its derived oils[J].Modern Food Science and Technology,2019,35(11):199-205;151.
[11] 姜燕蓉,张亚飞,齐筱莹,等.等电点沉淀法提取牡蛎蛋白及其蛋白组成分析[J].渔业研究,2019,41(2):106-112.
JIANG Y R,ZHANG Y F,et al.Isoelectric point precipitation method was used to extract oyster protein and analyze its composition[J].Journal of Fisheries Research,2019,41(2):106-112.
[12] NISSEN J A.Enzymatic hydrolysis of food proteins[M].London:Elsevier Applied Science Publishers,1986.
[13] 沈佳奇.麦芽根多肽制备及其抑制α-葡萄糖苷酶活性的研究[D].广州:华南理工大学,2019.
SHEN J Q.Preparation of malt root polypeptide and its inhibition on α-glucosidase activity[D].Guangzhou:South China University of Technology,2019.
[14] MEDINA-MEZA I G,ALUWI N A,SAUNDERS S R,et al.Profiling of triterpenoid saponins from 28 quinoa varieties (Chenopodium quinoa Willd) grown in Washington State by GC-MS[J].Journal Agricultural Food Chemistry,2016,64(45):8 583-8 591.
[15] DECKER E A,WELCH B.Role of ferritin as a lipid oxidation catalyst in muscle food[J].Journal of Agricultural & Food Chemistry,1990,38(3):674-677.
[16] 赵璇.洋葱蛋白及多肽的制备及其体外抗氧化活性评价[J].中国调味品,2020,45(2):112-115.
ZHAO X.Preparation of onion protein and peptides and evaluation of their antioxidant activity in vitro[J].China Condiment,2020,45(2):112-115.
[17] RUIZ G A,WU K X,MARTINUS V B,et al.Effect of extraction pH on heat-induced aggregation,gelation and microstructure of protein isolate from quinoa (Chenopodium quinoa Willd)[J].Food Chemistry,2016,209:203-210.
[18] VALENZUELA C,ABUGOCH L,TAPIA C,et al.Effect of alkaline extraction on the structure of the protein of quinoa (Chenopodium quinoa Willd.) and its influence on film formation[J].International Journal of Food Science & Technology,2013,48(4):843-849.
[19] CHEN H M,MURAMOTO K,YAMAUCHI F.Structural analysis of antioxidative peptides from soybean b-conglycinin[J].Journal of Agricultural and Food Chemistry,1995,43:574-578.
[20] ADAMSON N J,REYNOLDS E C.Characterization of casein phosphopeptides prepared using alcalase:Determination of enzyme specificity[J].Enzyme and Microbial Technology,1996,19(3):202-207.
[21] ZENG L,ZHANG G,LIAO Y,et al.Inhibitory mechanism of morin on α-glucosidase and its anti-glycation properties[J].Food & Function,2016,7(9):3 953-3 963.
[22] INES K,OLFA T,DORRA G,et al.Antioxidant,antityrosinase and antibiofilm activities of synthesized peptides derived from Vicia faba protein hydrolysate:A powerful agents in cosmetic application[J].Industrial Crops & Products,2017,109:310-319.
[23] GUO L,HOU H,LI B,et al.Preparation,isolation and identification of iron-chelating peptides derived from Alaska pollock skin[J].Process Biochemistry,2013,48(5-6):988-999.
[1] 丁文玉, 何聪芬, 刘蕾, 杨笑笑, 董坤. 草莓叶水提物对成纤维细胞合成Ⅰ型胶原及分泌骨形态发生蛋白-1的影响[J]. 食品与发酵工业, 2021, 47(9): 114-119.
[2] 李云嵌, 杨曦, 刘江, 吴娟, 王振兴, 张雪春. 超声波辅助碱法提取美藤果分离蛋白及其加工性质研究[J]. 食品与发酵工业, 2021, 47(9): 128-135.
[3] 伏慧慧, 马雪莲, 普莉雯, 王念念, 袁湖川, 黄桂芳, 王庆玲. 干腌牛肉加工过程中蛋白质变化对品质的影响[J]. 食品与发酵工业, 2021, 47(9): 223-230.
[4] 赵帅东, 刘婷, 季旭, 杨梓璐, 尹轩威, 施文正, 汪立平, 宁喜斌. 利用外源蛋白酶和曲霉菌YL001加速沙丁鱼鱼露的发酵[J]. 食品与发酵工业, 2021, 47(8): 14-20.
[5] 陈晓思, 贺稚非, 王泽富, 李洪军. 过氧自由基对兔肉肌原纤维蛋白理化性质及结构的影响[J]. 食品与发酵工业, 2021, 47(8): 54-61.
[6] 贾叶, 包斌, 马明, 魏婷. 蚕蛹蛋白源肠内营养混悬剂对二型糖尿病小鼠肠道菌的影响[J]. 食品与发酵工业, 2021, 47(8): 62-66.
[7] 阮雁春, 彭旭东, 杨丹. 花生蛋白水解物对色拉酱贮藏稳定性的影响[J]. 食品与发酵工业, 2021, 47(8): 96-100.
[8] 周慧宁, 张一晟, 张惠玲, 李海峰. 一株可降解马铃薯淀粉汁水中蛋白质菌株筛选与发酵产物分析[J]. 食品与发酵工业, 2021, 47(8): 158-164.
[9] 侯钰柯, 石金明, 曾宪明, 尹家琪, 田惠鑫, 白云, 唐长波, 韩敏义, 徐幸莲. 类蛋白反应及其在肉类中的应用[J]. 食品与发酵工业, 2021, 47(8): 261-267.
[10] 刘素素, 沙磊. 植物蛋白基肉制品的营养安全性分析[J]. 食品与发酵工业, 2021, 47(8): 297-303.
[11] 李红娟, 刘婷婷, 邹璇, 赵树静, 李丹, 李媛, 李洪波, 于景华. 乳清蛋白-黄油乳液凝胶对低脂酸奶理化特性及品质的影响[J]. 食品与发酵工业, 2021, 47(7): 71-77.
[12] 赵改名, 茹昂, 郝婉名, 张桂艳, 田玮, 祝超智, 乃比江, 刘建明. 不同母本西门塔尔杂交牛各部位肉品质与蛋白质功能特性的差异[J]. 食品与发酵工业, 2021, 47(7): 78-85.
[13] 吴清孝, 张海龙, 秦小明, 谌素华. 金花茶花浸提物与消化蛋白酶的相互作用[J]. 食品与发酵工业, 2021, 47(7): 130-136.
[14] 赵颖颖, 李三影, 田金凤, 扶磊, 贾丰鲜, 李可, 吴丽丽, 白艳红. 超声波对不同盐浓度下肌原纤维蛋白溶解性的影响[J]. 食品与发酵工业, 2021, 47(7): 197-202.
[15] 耿雪营, 郭藏, 米生权, 张艳贞, 郭俊霞, 陈文. 单宁的血糖调节活性功能研究进展[J]. 食品与发酵工业, 2021, 47(7): 301-306.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn