Please wait a minute...
食品与发酵工业  2021, Vol. 47 Issue (9): 42-48    DOI: 10.13995/j.cnki.11-1802/ts.025447
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
Lactobacillus reuteri 121 4,6-α-葡萄糖基转移酶GtfBdN改性薯类淀粉产物结构及理化特性研究
蒋彤1,2,3,4, 纪杭燕1,2,3,4, 柏玉香1,2,3,4*
1(食品科学与技术国家重点实验室(江南大学),江苏 无锡,214122)
2(江南大学 食品学院,江苏 无锡,214122)
3(江南大学 食品安全与营养协同创新中心,江苏 无锡,214122)
4(食品安全国际联合实验室(江南大学),江苏 无锡,214122)
Structure and physicochemical properties of tuber starches modified by Lactobacillus reuteri 121 4,6-α-glucanotransferase GtfBdN
JIANG Tong1,2,3,4, JI Hangyan1,2,3,4, BAI Yuxiang1,2,3,4*
1(State Key Laboratory of Food Science and Technology,Jiangnan University,Wuxi 214122,China)
2(School of Food Science and Technology,Jiangnan University,Wuxi 214122,China)
3(Synergetic Innovation Center of Food Safety and Nutrition,Jiangnan University,Wuxi 214122,China)
4(International Joint Laboratory on Food Safety,Jiangnan University,Wuxi 214122,China)
下载:  HTML  PDF (2916KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 经过Lactobacillus reuteri 121 4,6-α-葡萄糖基转移酶(4,6-α-glucanotransferase,4,6-α-GTase)GtfB改性淀粉可以得到一种具有益生潜力的水溶性膳食纤维。利用截断N端但高表达的全活性GtfBdN改性薯类淀粉,包括红薯淀粉、木薯淀粉和马铃薯淀粉,对产物进行结构和性质测定。通过核磁共振光谱、高效尺寸排阻色谱和高效阴离子交换色谱分析表明,GtfBdN改性分别使红薯淀粉、木薯淀粉和马铃薯淀粉中(α1→6)键比例提升至20.7%、19.5%和26.6%;产物相对分子质量减小,分子质量分布变广;聚合度>24的链段比例降低,聚合度 6~12的链段比例大大增加。采用快速黏度分析仪、流变仪和差示扫描量热仪等测试发现,产物黏度大幅下降,表现出更多的流体行为,短期回生和长期回生减慢。该研究为4,6-α-GTase改性薯类淀粉在食品体系中的应用提供了理论和应用依据。
E-mail Alert
关键词:  4,6-α-葡萄糖基转移酶  薯类淀粉  结构分析  糊化特性  黏弹特性  回生特性    
Abstract: After the modification by Lactobacillus reuteri 121 4,6-α-glucanotransferase (4,6-α-GTase) GtfB, a water-soluble dietary fiber with probiotic potential can be obtained from starch. At present, the research has focused on the correlation between the structure of the product and its functional properties such as digestibility and probiotics. However, the research on the correlation between the structure and the physicochemical properties which are crucial for food processing has not yet been carried out. In this study, overexpressed GtfBdN with truncated N-terminal but full activity was used to modify tuber starches, including sweet potato starch, tapioca starch and potato starch. The structures and properties of the products were determined. The analysis results of nuclear magnetic resonance (NMR) spectroscopy, high performance size exclusion chromatography (HPSEC) and high performance anion exchange chromatography (HPAEC) showed that GtfBdN modification increased the ratio of (α1→6) bond in sweet potato starch, tapioca starch and potato starch to 20.7%, 19.5% and 26.6%, respectively; the relative molecular weight of the product was reduced, and the peak of molecular weight distribution was broader, the proportion of segments with DP>24 decreased, and the proportion of segments with DP 6-12 greatly increased. Tests such as rapid visco-analyzer (RVA), rheometer and differential scanning calorimetry (DSC) showed that the viscosity of the product dropped significantly, showing more fluid behavior, and the short-term and long-term retrogradation slowed down. This research provides theoretical and application basis for the application of 4,6-α-GTase modified tuber starch in food systems.
Key words:  4,6-α-glucanotransferase    tuber starch    structural analysis    gelatinization property    viscoelastic property    retrogradation property
收稿日期:  2020-08-21      修回日期:  2020-10-26           出版日期:  2021-05-15      发布日期:  2021-06-03      期的出版日期:  2021-05-15
基金资助: 国家自然科学基金青年科学基金项目(31701644);江苏省农业科技自主创新项目(CX(17)2022);食品科学与技术国家重点实验室自主研究课题项目(SKLF-ZZB-202007)
作者简介:  硕士研究生(柏玉香副研究员为通讯作者,
蒋彤,纪杭燕,柏玉香. Lactobacillus reuteri 121 4,6-α-葡萄糖基转移酶GtfBdN改性薯类淀粉产物结构及理化特性研究[J]. 食品与发酵工业, 2021, 47(9): 42-48.
JIANG Tong,JI Hangyan,BAI Yuxiang. Structure and physicochemical properties of tuber starches modified by Lactobacillus reuteri 121 4,6-α-glucanotransferase GtfBdN[J]. Food and Fermentation Industries, 2021, 47(9): 42-48.
链接本文:  或
[1] KRALJ S,GRIJPSTRA P,VAN LEEUWEN S S,et al.4,6-α-Glucanotransferase,a novel enzyme that structurally and functionally provides an evolutionary link between glycoside hydrolase enzyme families 13 and 70[J].Applied and Environmental Microbiology,2011,77(22):8 154-8 163.
[2] DOBRUCHOWSKA J M,GERWIG G J,KRALJ S,et al.Structural characterization of linear isomalto-/malto-oligomer products synthesized by the novel GTFB 4,6-α-glucanotransferase enzyme from Lactobacillus reuteri 121[J].Glycobiology,2012,22(4):517-528.
[3] BAI Y X,VAN DER KAAIJ R M,LEEMHUIS H,et al.Biochemical characterization of the Lactobacillus reuteri glycoside hydrolase family 70 GTFB type of 4,6-α-glucanotransferase enzymes that synthesize soluble dietary starch fibers[J].Applied and Environmental Microbiology,2015,81(20):7 223-7 232.
[4] BAI Y X,GANGOITI J,DIJKSTRA B W,et al.Crystal structure of 4,6-α-glucanotransferase supports diet-driven evolution of GH70 enzymes from α-amylases in oral bacteria[J].Structure,2017,25(2):231-242.
[5] LEEMHUIS H,DIJKMAN W P,DOBRUCHOWSKA J M,et al.4,6-α-Glucanotransferase activity occurs more widespread in Lactobacillus strains and constitutes a separate GH70 subfamily[J].Applied Microbiology and Biotechnology,2013,97(1):181-193.
[6] GANGOITI J,PIJNING T,DIJKHUIZEN L.The Exiguobacterium sibiricum 255-15 GtfC enzyme represents a novel glycoside hydrolase 70 subfamily of 4,6-α-Glucanotransferase enzymes[J].Applied and Environmental Microbiology,2016,82(2):756-766.
[7] GANGOITI J,VAN LEEUWEN S S,VAFIADI C,et al.The Gram-negative bacterium Azotobacter chroococcum NCIMB 8003 employs a new glycoside hydrolase family 70 4,6-α-glucanotransferase enzyme (GtfD) to synthesize a reuteran like polymer from maltodextrins and starch[J].Biochimica et Biophysica Acta-General Subjects,2016,1860(6):1 224-1 236.
[8] GANGOITI J,LAMOTHE L,VAN LEEUWEN S S,et al.Characterization of the Paenibacillus beijingensis DSM 24997 GtfD and its glucan polymer products representing a new glycoside hydrolase 70 subfamily of 4,6-α-glucanotransferase enzymes[J].Plos One,2017,12(4).DOI:10.1371/journal.pone.0172622.
[9] GANGOITI J,VAN LEEUWEN S S,MENG X,et al.Mining novel starch-converting glycoside hydrolase 70 enzymes from the Nestlé culture collection genome database:The Lactobacillus reuteri NCC 2613 GtfB[J].Scientific Reports,2017,7(1).DOI:10.1038/s41 598-017-07190-z.
[10] MENG X F,GANGOITI J,DEKOK N,et al.Biochemical characterization of two GH70 family 4,6-α-glucanotransferases with distinct product specificity from Lactobacillus aviarius subsp.aviarius DSM 20655[J].Food Chemistry,2018,253:236-246.
[11] GANGOITI J,VAN LEEUWEN S S,GERWIG G J,et al.4,3-α-Glucanotransferase,a novel reaction specificity in glycoside hydrolase family 70 and clan GH-H[J].Scientific Reports,2017,7.DOI:10.1038/srep39761.
[12] VAN DER ZAAL P H,SCHOLS H A,BITTER J H,et al.Isomalto/malto-polysaccharide structure in relation to the structural properties of starch substrates[J].Carbohydrate Polymers,2018,185:179-186.
[13] VAN DER ZAAL P H,KLOSTERMANN C E,SCHOLS H A,et al.Enzymatic fingerprinting of isomalto/malto-polysaccharides[J].Carbohydrate Polymers,2019,205:279-286.
[14] LEEMHUIS H,DOBRUCHOWSKA J M,EBBELAAR M,et al.Isomalto/malto-polysaccharide,a novel soluble dietary fibre made via enzymatic conversion of starch[J].Journal of Agricultural and Food Chemistry,2014,62(49):12 034-12 044.
[15] GU F J,BOREWICZ K,RICHTER B,et al.In vitro fermentation behaviour of isomalto/malto-polysaccharides using human faecal inoculum indicates prebiotic potential[J].Molecular Nutrition and Food Research,2018,62(12):1800232.DOI:10.1002/mnfr.201800232.
[16] JI H Y,BAI Y X,LI X X,et al.Structural and property characterization of corn starch modified by cyclodextrin glycosyltransferase and specific cyclodextrinase[J].Carbohydrate Polymers,2020,237:116137.DOI:10.1016/j.carbpol.2020.116137.
[17] CHANG R R,TIAN Y Q,LU H,et al.Effects of fractionation and heat-moisture treatment on structural changes and digestibility of debranched waxy maize starch[J].Food Hydrocolloids,2020,101.DOI:10.1016/j.foodhyd.2019.105488.
[18] BHAT N A,WANI I A,HAMDANI A M,et al.Effect of extrusion on the physicochemical and antioxidant properties of value added snacks from whole wheat (Triticum aestivum L.) flour[J].Food Chemistry,2019,276:22-32.
[19] BAI Y X,BÖGER M,VAN DER KAAIJ R M,et al.Lactobacillus reuteri strains convert starch and maltodextrins into homoexopolysaccharides using an extracellular and cell-associated 4,6-α-Glucanotransferase[J].Journal of Agricultural and Food Chemistry,2016,64(14):2 941-2 952.
[20] BELLO-PEREZ L A,ROGER P,BAUD B,et al.Macromolecular features of starches determined by aqueous high-performance size exclusion chromatography[J].Journal of Cereal Science,1998,27(3):267-278.
[21] YE F Y,XIAO L,LIANG Y N,et al.Spontaneous fermentation tunes the physicochemical properties of sweet potato starch by modifying the structure of starch molecules[J].Carbohydrate Polymers,2019,213:79-88.
[22] 于轩.不同来源淀粉的分子结构对其酶解性能影响的研究[D].无锡:江南大学,2013.
YU X.The effect of molecular structure on enzymatic properties of starches from various sources[D].Wuxi:Jiangnan University,2013.
[23] LI H,CUI B,JANASWAMY S,et al.Structural and functional modifications of kudzu starch modified by branching enzyme[J].International Journal of Food Properties,2019,22(1):952-966.
[24] 廖卢艳,吴卫国.不同淀粉糊化及凝胶特性与粉条品质的关系[J].农业工程学报,2014,30(15):332-338.
LIAO L Y,WU W G.Relationship between gelatinization and gel properties of different starch and their noodles[J].Transactions of the Chinese Society of Agricultural Engineering,2014,30(15):332-338.
[25] DURA A,BTASZCZAK W,ROSELL C M.Functionality of porous starch obtained by amylase or amyloglucosidase treatments[J].Carbohydrate Polymers,2014,101:837-845.
[26] 黄峻榕,董贝贝,刘树兴,等.3种薯类淀粉的流变与凝胶特性研究[J].粮食与油脂,2017,30(4):25-29.
HUANG J R,DONG B B,LIU S X,et al.Study of rheological and gel properties of three tuber starches[J].Cereals & Oils,2017,30(4):25-29.
[27] YUAN D,LI C,HUANG Q,et al.Ultrasonic degradation effects on the physicochemical,rheological and antioxidant properties of polysaccharide from Sargassum pallidum[J].Carbohydrate Polymers,2020,239.DOI:10.1016/j.carbpol.2020.116230.
[28] GUJRAL H S,ROSELL C M.Modification of pasting properties of wheat starch by cyclodextrin glycosyltransferase[J].Journal of the Science of Food and Agriculture,2010,84(13):1 685-1 690.
[29] AUH J H,CHAE H Y,KIM Y R,et al.Modification of rice starch by selective degradation of amylose using Alkalophilic Bacillus Cyclomaltodextrinase[J].Journal of Agricultural and Food Chemistry,2006,54(1):2 314-2 319.
[30] GREWAL N,FAUBION J,FENG G H,et al.Structure of waxy maize starch hydrolyzed by maltogenic α-amylase in relation to its retrogradation[J].Journal of Agricultural and Food Chemistry,2015,63(16):4 196-4 201.
[1] 张龑, 龚号迪, 陈志成. 脱皮率对青稞粉的品质及面团特性的影响[J]. 食品与发酵工业, 2021, 47(5): 133-137.
[2] 牟方婷, 袁美, 石黎琳, 曾凡坤, 陈嘉, 张玉. 超声和微波辅助果胶酶处理对果胶结构的影响[J]. 食品与发酵工业, 2021, 47(4): 215-221.
[3] 范三红, 贾槐旺, 张锦华, 任嘉兴, 白宝清. 羊肚菌多糖纯化、结构分析及抗氧化活性[J]. 食品与发酵工业, 2020, 46(3): 65-71.
[4] 石兵艳, 李祥, 刘毅, 王芸. 八月瓜果皮中常春藤皂苷元水解工艺优化及图谱分析[J]. 食品与发酵工业, 2020, 46(2): 239-245.
[5] 沈舒民, 仇丹, 李罗飞, 严雨婷, 敖天瑜, 孔祥礼. 芋艿淀粉的功能特性[J]. 食品与发酵工业, 2020, 46(18): 72-77.
[6] 焦昆鹏, 马丽苹, 张晓宇, 罗磊, 向进乐, 樊金玲, 杜琳. 水溶性大豆多糖对马铃薯淀粉理化性能的影响[J]. 食品与发酵工业, 2020, 46(14): 54-59.
[7] 孙培利, 车正清, 焦捷, 蒲莹, 王树林, 杜艳. 复合菌种发酵对青稞淀粉品质的影响[J]. 食品与发酵工业, 2020, 46(14): 176-181.
[8] 郑炯, 余彬彬, 曾瑞琪, 张甫生. 不同盐离子对豌豆淀粉/低酯果胶复配体系理化特性的影响[J]. 食品与发酵工业, 2019, 45(7): 101-108.
[9] 郑炯, 张可珺, 曾瑞琪, 张甫生. 高酯果胶对豌豆淀粉凝胶糊化及流变特性的影响[J]. 食品与发酵工业, 2019, 45(6): 91-96.
[10] 裴亚利, 张宝善, 韦露莎, 王敏, 朱莉莉, 周琦, 付军伟. 双氧水处理对红枣果渣酶解效果的影响及其结构分析[J]. 食品与发酵工业, 2019, 45(4): 103-109.
[11] 杨文丽, 杨波, 杨光. 纳豆多糖的理化性质及结构分析[J]. 食品与发酵工业, 2019, 45(20): 132-137.
[12] 胡冰,徐睿,邱立忠,田耀旗. V-型晶种对大米淀粉回生特性的影响[J]. 食品与发酵工业, 2019, 45(12): 62-66.
[13] 李真, 朱畇昊, 艾志录, 等. 胖大海胶对鲜湿面流变学特性及蒸煮品质的影响[J]. 食品与发酵工业, 2018, 44(8): 86-92.
[14] . 碱性盐对面团流变特性及面条品质的影响[J]. 食品与发酵工业, 2018, 44(4): 97-103.
[15] 郑贤金, 汤斌. 匍枝根霉诱变株β-葡萄糖苷酶结构功能研究及发酵优化[J]. 食品与发酵工业, 2018, 44(11): 42-48.
No Suggested Reading articles found!
Full text



版权所有 © 《食品与发酵工业》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持