Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (9): 25-31    DOI: 10.13995/j.cnki.11-1802/ts.025499
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
龙眼核多酚对蛋白非酶糖基化的抑制及机制研究
郑子锋1,2, 孙培冬1,2*
1(食品胶体与生物技术教育部重点实验室(江南大学),江苏 无锡,214122)
2(江南大学 化工与材料工程学院,江苏 无锡,214122)
Inhibition and mechanism of longan seed polyphenols on non-enzymatic glycation of protein
ZHENG Zifeng1,2, SUN Peidong1,2*
1(The Key Laboratory of Food Colloids and Biotechnology(Jiangnan University),Wuxi 214122,China)
2(School of Chemical and Material Engineering,Jiangnan University,Wuxi 214122,China)
下载:  HTML  PDF (8766KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过荧光分析法和酶联免疫技术,分别检测牛血清白蛋白-葡萄糖反应模型中荧光性晚期糖基化终产物(advanced glycation end-products,AGEs)和羧甲基赖氨酸(Nε-(carboxymethyl) lysine,CML)的生成情况来评价龙眼核多酚抑制蛋白非酶糖基化的作用;利用高效液相色谱衍生化法,检测牛血清白蛋白-葡萄糖反应模型和Amadori产物反应模型中二羰基化合物含量,并用Amadori产物反应模型和丙酮醛反应模型对龙眼核多酚抑制糖基化的机制进行分析。结果表明:在激发/发射波长为335/385 nm和370/440 nm处,5 μg/mL的龙眼核多酚对荧光性AGEs生成的抑制率分别为62.4%和21.3%,对CML生成的抑制率为61.5%。龙眼核多酚能够降低模型中70%的乙二醛、丙酮醛含量。通过反应模型分析,龙眼核多酚能够通过抗氧化作用和捕获羰基,在糖基化反应的中后期较好地抑制AGEs的产生。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑子锋
孙培冬
关键词:  龙眼核多酚  二羰基化合物  荧光性AGEs  羧甲基赖氨酸  抗糖基化    
Abstract: Using fluorescence analysis and enzyme-linked immunosorbent assay, the content of fluorescent advanced glycation end-products(AGEs) and (Nε-(carboxymethyl) lysine) CML in the bovine serum albumin-glucose reaction model was determined and used to evaluate the anti-glycation effect of longan seed polyphenols. Based on the high-performance liquid chromatography derivatization method, the production of dicarbonyl compounds in the Amadori product reaction model and methylglyoxal reaction model was measured and applied to analyze the mechanism of longan seed polyphenols inhibiting glycation. The results showed that the inhibition rates of 5 μg/mL longan seed polyphenols at excitation/emission wavelengths of 335/385 nm and 370/440 nm on the production of fluorescent AGEs were 62.4% and 21.3%, respectively, and the inhibition rate on the production of CML was 61.5%. Longan seed polyphenols can reduce 70% of the glyoxal and methylglyoxal in the model. Through reaction model analysis, longan seed polyphenols can inhibit the production of AGEs in the middle and late stages of the glycation reaction through anti-oxidation and capture of carbonyl groups.
Key words:  longan seed polyphenols    dicarbonyl compounds    fluorescence AGEs    Nε-(carboxymethyl) lysine    anti-glycation
收稿日期:  2020-08-27      修回日期:  2020-10-12           出版日期:  2021-05-15      发布日期:  2021-06-03      期的出版日期:  2021-05-15
作者简介:  硕士研究生(孙培冬副教授为通讯作者,E-mail:1749067282@qq.com)
引用本文:    
郑子锋,孙培冬. 龙眼核多酚对蛋白非酶糖基化的抑制及机制研究[J]. 食品与发酵工业, 2021, 47(9): 25-31.
ZHENG Zifeng,SUN Peidong. Inhibition and mechanism of longan seed polyphenols on non-enzymatic glycation of protein[J]. Food and Fermentation Industries, 2021, 47(9): 25-31.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.025499  或          http://sf1970.cnif.cn/CN/Y2021/V47/I9/25
[1] MONNIER V M,CERAMI A.Nonenzymatic browning in vivo:Possibleprocess for aging of long-lived proteins[J].Science,1981,211(4481):491-493.
[2] CERAMI A.Hypothesis:Glucose as a mediator of aging[J].Journal of the American Geriatrics Society,1985,33(9):626-634.
[3] EMEL'YANOV V V.Glycation,antiglycation,and deglycation:Their role in aging mechanisms and geroprotective effects (literature review)[J].Advances in Gerontology,2017,7(1):1-9.
[4] NEDIĆ O,RATTAN S I S,GRUNE T,et al.Molecular effects of advanced glycation end products on cell signaling pathways,ageing and pathophysiology[J].Free Radical Research,2013,47(1):28-38.
[5] OTT C,JACOBS K,HAUCKE E,et al.Role of advanced glycation end products in cellular signaling[J].Redox Biology,2014,2:411-429.
[6] ENGELEN L,STEHOUWER C D A,SCHALKWIJK C G.Current therapeutic interventions in the glycation pathway:Evidence from clinical studies[J].Diabetes,Obesity and Metabolism,2013, 15(8):677-689.
[7] ZHOU Q,GONG J,WANG M F.Phloretin and its methylglyoxal adduct:Implications against advanced[J].Food and Chemical Toxicology,2019,129:291-300.
[8] ZHANG L,LU Y,YE Y H,et al.Insights into the mechanism of quercetin against BSA-fructose glycation by spectroscopy and high-resolution mass spectrometry:Effect on physicochemical properties[J].Journal of Agricultural and Food Chemistry,2019,67(1):236-246.
[9] WANG M F,ZHANG X C,ZHONG Y J,et al.Antiglycation activity of lipophilized epigallocatechin gallate (EGCG) derivatives[J].Food Chemistry,2016,190:1 022-1 026.
[10] KHALIFA I,PENG J M,JIA Y Y,et al.Anti-glycation and anti-hardening effects of microencapsulated mulberry polyphenols in high-protein-sugar ball models through binding with some glycation sites of whey proteins[J].Interntional Journal of Biological Macromolecules,2019,123:10-19.
[11] CHEN H Y,VIRK M S,CHEN F S.Phenolic acids inhibit the formation of advanced glycation end products in food simulation systems depending on their reducing powers and structures[J].International Journal of Food Sciences and Nutrition,2016,67(4):400-411.
[12] 孙菡峥,孙培冬.龙眼核多酚的提取分离及抗氧化性能研究[J].食品与发酵工业,2019,45(9):197-201.
SUN H Z,SUN P D.separation,and antioxidant activities of polyphenols from longan seeds [Dimocarpus longan Lour.(syn.Euphoria longana Lam.)[J].Food and Fermentation Industries,2019,45(9):197-201.
[13] 何婷,王凯,赵雷,等.大孔树脂纯化龙眼核多酚及其组分分析[J].食品工业科技,2019,40(16):1-6;13.
HE T,WANG K,ZHAO L,et al.Purification of longan seeds polyphenols bymacroporous resin and its component analysis[J].Science and Technology of Food Industry,2019,40(16):1-6;13.
[14] PENG X F,ZHENG Z P,CHENG K W,et al.Inhibitory effect of mung bean extract and its constituents vitexin and isovitexin on the formation of advanced glycation endproducts[J].Food Chemistry,2008,106(2):475-481.
[15] ZHANG X C,HU S T,CHEN F,et al.Treatment of proteins with dietary polyphenols lowers the formation of AGEs and AGE-induced toxicity[J].Food & Function,2014,5(10):2 656-2 661.
[16] SANG S M,SHAO X,BAI N S,et al.Tea polyphenol (-)-epigallocatechin-3-gallate:A new trapping agent of reactive dicarbonyl species[J].Chemical Research in Toxicology,2007,20(12):1 862-1 870.
[17] OLIVEIRA C M,SANTOS S A O,SILVESTRE,A J D,et al.Quantification of 3-deoxyglucosone (3DG) as an aging marker in natural and forced aged wines[J].Journal of Food Composition and Analysis,2016,50:70-76.
[18] PAGEON H,TECHER M P,ASSELINEAU D.Reconstructed skin modified by glycation of the dermal equivalent as a model for skin aging and its potential use to evaluate anti-glycation molecules[J].Experimental Gerontology,2008,43(6):584-588.
[19] LI X M, ZHENG T S,SANG S M,et al.Quercetin inhibits advanced glycation end product formation by trapping methylglyoxal and glyoxal[J].Journal of Agricultural and Food Chemistry,2014,62:12 152-12 158.
[20] FARAGE M A,PAGEON H,ZUCCHI H,et al.Textbook of aging skin[M].Berlin,Heidelberg:Springer-Verlag,2017.
[1] 罗子阳, 闫徐, 易灵, 王超, 段翰英. 超高静压对蜂蜜主要品质的影响[J]. 食品与发酵工业, 2021, 47(4): 182-187.
[2] 毕日秀, 芦晶, 张书文, 逄晓阳, 胡诚, 于景华, 吕加平. 市售褐色酸奶在不同贮藏条件下美拉德反应副产物变化规律[J]. 食品与发酵工业, 2021, 47(1): 116-124.
[3] 陈荣祥, 顾雯, 罗敏, 何婷, 尹考, 罗春燕. 液相色谱-串联质谱法测定木瓜发酵饮料中的三种α-二羰基化合物[J]. 食品与发酵工业, 2020, 46(18): 197-202.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn