Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (12): 133-139    DOI: 10.13995/j.cnki.11-1802/ts.025528
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
海藻酸钠的可控分子质量高效非均相降解
杨英歌1*, 黄继翔2, 李荣3
1(徐州生物工程职业技术学院 药品食品学院,江苏 徐州,221006)
2(菏泽高新区优科生物科技有限公司,山东 菏泽,274000)
3(山东省城市服务技师学院 西餐学院,山东 烟台,264670)
The highly efficient degradation of the controllable molecular weight of sodium alginate in a heterogeneous system
YANG Yingge1*, HUANG Jixiang2, LI Rong3
1(School of Pharmaceutical and Food, Xuzhou Vocational College of Bioengineering, Xuzhou 221006, China)
2(Heze High Technology Zone Youke Biology Science and Technology Co, Ltd, Heze 274000, China)
3(School of Western Cuisine, Shandong City Service Technician College, Yantai 264670, China)
下载:  HTML  PDF (4092KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 在多糖无法溶解的非均相体系中,研究海藻酸钠的高效降解工艺。以降解产物黏度为指标,单因素试验考察温度、催化剂用量和时间对降解产物黏度的影响,采用Box-Behnken法继续优化降解工艺。选择特定降解程度的海藻酸钠降解产物,使用凝胶色谱-示差-多角度激光光散射法测定分子质量,并进行红外光谱扫描和表面扫描电镜观察。海藻酸钠降解程度与温度、催化剂用量、时间在取值范围内正相关,在固液比1∶4(g∶mL)条件下,响应面优化所得最佳条件为温度61.53 ℃、催化剂用量1.0 g/10g海藻酸钠、时间5 h,所得降解产物数均分子质量为15.4 kDa。通过控制降解条件可相对精确地控制降解产物分子质量,获得数均分子质量在15 kDa~110 kDa内的降解产物。红外光谱扫描结果表明,降解处理对海藻酸钠糖链结构特征无影响,根据表面扫描电镜结果认为降解发生在多糖颗粒表面并逐渐深入。海藻酸钠的非均相降解方法具有效率高、操作简便、易于放大的优点,并可通过控制降解条件来获得特定分子质量的降解产物。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨英歌
黄继翔
李荣
关键词:  海藻酸钠  非均相降解  高效  可控分子质量  降解工艺    
Abstract: This study aimed to explore the degradation processing parameters of sodium alginate in a heterogeneous system. By measuring viscosity value, the effects of temperature, catalyst dosage and time in degradation process were investigated by the single-factor experiment and the Box-Behnken method. The degradation of products with different viscosity were selected and observed by FT-IR and SEM methods, and the molecular weight was determined by GPC-RI-MALS method. Within the parameter range, the degradation degree was positively correlated with the temperature, catalyst dosage and time. In the solid-liquid ratio of 1∶4 (g∶mL), the optimal conditions were obtained as follows: The catalyst dosage of 1.0 g/10g sodium alginate at 61.53 ℃ for 5 h. In this condition, the average molecular weight of the degradation product was 15.4 kDa. The molecular weight of the degradation products could be controlled by regulating the degradation parameters and a series of products with 15 kDa-110 kDa number-average molecular weight were obtained. The FT-IR results showed that the structure of the chain did not change after the degradation. The SEM photographs showed that the degradation occurred firstly on the surface of polysaccharide particles and then extended to the interior. The degradation of sodium alginate in the heterogeneous system had high efficiency and simplicity of operation was easy to magnify on the industrial scale.
Key words:  sodium alginate    heterogeneous degradation    high-efficiency    controlled molecular weight    degradation process
收稿日期:  2020-08-31      修回日期:  2020-10-22           出版日期:  2021-06-25      发布日期:  2021-07-22      期的出版日期:  2021-06-25
基金资助: 2018年江苏高校“青蓝工程”项目资助;2018年徐州生物工程职业技术学院院级课题(2018KY07)
作者简介:  硕士,副教授(本文通讯作者,E-mail:ygyang_1982@163.com)
引用本文:    
杨英歌,黄继翔,李荣. 海藻酸钠的可控分子质量高效非均相降解[J]. 食品与发酵工业, 2021, 47(12): 133-139.
YANG Yingge,HUANG Jixiang,LI Rong. The highly efficient degradation of the controllable molecular weight of sodium alginate in a heterogeneous system[J]. Food and Fermentation Industries, 2021, 47(12): 133-139.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.025528  或          http://sf1970.cnif.cn/CN/Y2021/V47/I12/133
[1] WAN J, ZHANG J, CHEN D W, et al.Alginate oligosaccharide alleviates enterotoxigenic Escherichia coli-induced intestinal mucosal disruption in weaned pigs[J].Food & Function, 2018, 9(12):6 401-6 413.
[2] TRAN V C, CHO S Y, KWON J, et al.Alginate oligosaccharide (AOS) improves immuno-metabolic systems by inhibiting STOML2 overexpression in high-fat-diet-induced obese zebrafish[J].Food & Function, 2019, 10(8):4 636-4 648.
[3] KAWADA A, HIURA N, SHIRAIW M, et al.Stimulation of human keratinocyte growth by alginate oligosaccharides, a possible co-factor for epidermal growth factor in cell culture[J].Febs Letters, 1997, 408(1):43-46.
[4] KAWADA A, HIURA N, TAJIMA S, et al.Alginate oligosaccharides stimulate VEGF-mediated growth and migration of human endothelial cells[J].Archives of Dermatological Research, 1999, 291(10):542-547.
[5] ZHOU R, SHI X Y, BI D C, et al.Alginate-derived oligosaccharide inhibits neuroinflammation and promotes microglial phagocytosis of β-amyloid[J].Marine Drugs, 2015, 13(9):5 828-5 846.
[6] GUO J J, MA L L, SHI H T, et al.Alginate oligosaccharide prevents acute doxorubicin cardiotoxicity by suppressing oxidative stress and endoplasmic reticulum-mediated apoptosis[J].Marine Drugs, 2016, 14(12):1-13.
[7] QU Y, WANG Z M, ZHOU H H, et al.Oligosaccharide nanomedicine of alginate sodium improves therapeutic results of posterior lumbar interbody fusion with cages for degenerative lumbar disease in osteoporosis patients by downregulating serum miR-155[J].International Journal of Nanomedicine, 2017, 12:8 459-8 469.
[8] VERA J, CASTRO J, GONZALEZ A, et al.Seaweed polysaccharides and derived oligosaccharides stimulate defense responses and protection against pathogens in plants[J].Marine Drugs, 2011, 9(12):2 514-2 525.
[9] ZHANG C G, HOWLADER P, LIU T M, et al.Alginate oligosaccharide (AOS) induced resistance to Pst DC3000 via salicylic acid-mediated signaling pathway in Arabidopsis thaliana[J].Carbohydrate Polymers, 2019, 225(1):1-12.
[10] SANTOSH K B, HOWLDER P, JIA X C, et al.Alginate oligosaccharide postharvest treatment preserve fruit quality and increase storage life via Abscisic acid signaling in strawberry[J].Food Chemistry, 2019, 283(15):665-674.
[11] WAN J, ZHANG J, CHEN D W, et al.Alginate oligosaccharide-induced intestinal morphology,barrier function and epithelium apoptosis modifications have beneficial effects on the growth performance of weaned pigs[J].Journal of Animal Science and Biotechnology, 2018, 9:1-12.
[12] TAKESHI Y, TORU N, YOSHIKO Y, et al.Growth-promoting effect of alginate oligosaccharides on a unicellular marine microalga, Nannochloropsis oculata[J].Bioscience Biotechnology and Biochemistry, 2009, 73(2):450-453.
[13] NAOTSUGU NAGASAWA A, HIROSHI MITOMO A, FUMIO YOSHII B, et al.Radiation-induced degradation of sodium alginate[J].Polymer Degradation & Stability, 2000, 69(3):279-285.
[14] LEE D W, CHOI W S, BYUN M W, et al.Effect of γ-irradiation on degradation of alginate[J].Jounrnal of Agriculture and Food Chemistry, 2003, 51(16):4 819-4 823.
[15] ZHU B W, YIN H.Alginate lyase:Review of major sources and classification, properties, structure-function analysis and applications[J].Bioengineered Bugs, 2015, 6(3):125-131.
[16] HAN W J, GU J Y, CHENG Y Y, et al.Novel alginate lyase (Aly5) from a polysaccharide-degrading marine bacterium, Flammeovirga sp.strain MY04:Effects of module truncation on biochemical characteristics, alginate degradation patterns, and oligosaccharide-yielding properties[J].Applied and Environmental Microbiology, 2016, 82(1):364-374.
[17] ZHU B W, CHEN M J, YIN H, et al.Enzymatic hydrolysis of alginate to produce oligosaccharides by a new purified endo-type alginate lyase[J].Marine Drugs, 2016, 14(6):108-118.
[18] PENG C E, WANG Q B, LU D R, et al.A novel bifunctional endolytic alginate lyase with variable alginate-degrading modes and versatile monosaccharide-producing properties[J].Frontiers in Microbiology, 2018, 9:1-14.
[19] ZHU B W, NING L M, JIANG Y C, et al.Biochemical characterization and degradation pattern of a novel endo-type bifunctional alginate lyase AlyA from marine bacterium Isoptericola halotolerans[J].Marine Drugs, 2018, 16(8):258:1-13.
[20] ITOH T, NAKAGAWA E, YODA M, et al.Structural and biochemical characterization of a novel alginatelyase from paenibacillus sp.str.FPU-7[J].Scientific Reports, 2019, 9:1-14.
[21] TOMÉ LIN, BAIÃO V, SILVA W D, et al.Deep eutectic solvents for the production and application of new materials[J].Applied Materials Today, 2018, 10:30-50.
[22] RODA A, MATIAS A A, PAIVA A, et al.Polymer science and engineering using deep eutectic solvents[J].Polymers, 2019, 11(5):1-22.
[23] MAGDALENA Z, KATARZYNA W, TADEUSZ S.Deep eutectic solvents for polysaccharides processing:A review[J].Carbohydrate Polymers, 2018, 200:361-380.
[24] DAI Y T, VAN SPRONSEN J, WITKAMP G J, et al.Natural deep eutectic solvents as new potential media for green technology[J].Analytica Chimica Acta, 2013, 766:61-68.
[25] LIU Y, FRIESEN J B, MCALPINE J B, et al.Natural deep eutectic solvents:Properties, applications, and perspectives[J].Journal of Natural Products, 2018, 81(3):679-690.
[26] RASTOGI P, KANDASUBRAMANIAN B.Review of alginate-based hydrogel bioprinting for application in tissue engineering[J].Biofabrication, 2019, 11(4):1-10.
[27] ABASALIZADEH F, MOGHADDAM SV, ALIZADEH E, et al.Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting[J].Journal of Biological Engineering,2020, 8:1-11.
[28] WILLIAMS P A, CAMPBELL K T, SILVA E A.Alginate hydrogels of varied molecular weight distribution enable sustained release of sphingosine-1-phosphate and promote angiogenesis[J].Journal of Biomedical Materials Research Part A, 2018, 106(1):138-146.
[29] RAMOS P E, SILVA P, ALARIO M M, et al.Effect of alginate molecular weight and M/G ratio in beads properties foreseeing the protection of probiotics[J].Food Hydrocolloids, 2018, 77:8-16.
[30] ROSALÍA, RODRÍGUEZ-DORADO, CLARA, et al.Design of aerogels, cryogels and xerogels of alginate:Effect of molecular weight, gelation conditions and drying method on particles' micromeritics[J].Molecules, 2019, 24(6):1-13.
[1] 郭鹏妹, 秦艳, 赵希娟, 焦必宁. 金柑果实主要次生代谢产物含量及差异分析[J]. 食品与发酵工业, 2021, 47(9): 32-41.
[2] 王伟佳, 刘爱国, 廖振宇, 刘立增, 孙丽婷, 杨红, 刘蕊, 刘长旭, 李雨轩. 发酵乳中内源性苯甲酸产生的影响因素[J]. 食品与发酵工业, 2021, 47(9): 168-173.
[3] 曾玉雪, 罗惠波, 余东, 黄丹, 郭辉祥, 邹永芳. 浓香型大曲中降解生物胺菌株的筛选及应用[J]. 食品与发酵工业, 2021, 47(8): 145-151.
[4] 魏祖晨, 赵顺鑫, 周浓, 谷文超, 陈妍斌, 陈群辉, 张华. 响应面法优化浙贝母氨基酸提取工艺及含量测定[J]. 食品与发酵工业, 2021, 47(8): 180-188;196.
[5] 孔凡华, 杨春雪, 方从容, 邱楠楠, 徐佳佳, 白沙沙, 李东, 崔亚娟. 高效液相色谱法测定十字花科蔬菜中萝卜硫素的含量[J]. 食品与发酵工业, 2021, 47(8): 218-223.
[6] 范金平, 张盈, 魏进, 罗世霞, 段婷婷. QuEChERS结合超高效液相色谱串联质谱法测定花椒中烯效唑残留量及贮藏稳定性[J]. 食品与发酵工业, 2021, 47(8): 230-235.
[7] 唐璎, 邓展瑞, 黄佳, 杨晓楠. 黄曲霉毒素B1降解菌株的鉴定及降解产物研究[J]. 食品与发酵工业, 2021, 47(7): 64-70.
[8] 孔凡华, 徐佳佳, 郭倩, 白沙沙, 李东, 方从容, 邱楠楠, 崔亚娟. 高效液相色谱法测定虾青素油中虾青素的含量[J]. 食品与发酵工业, 2021, 47(6): 214-220.
[9] 陈怡博, 刘媛, 陈锐, 曹芸花, 韩豪. 高效液相色谱法测定略阳乌鸡肌肉中的肌苷酸[J]. 食品与发酵工业, 2021, 47(6): 228-233.
[10] 庞雯辉, 赵希娟, 陈西, 张耀海, 王成秋, 赵其阳, 焦必宁. 超高效液相色谱-四极杆-飞行时间高分辨质谱法快速筛查柠檬果实中的生物活性成分[J]. 食品与发酵工业, 2021, 47(4): 222-230.
[11] 伍清芳, 王敏, 陈鸿平, 陈林, 胡媛, 刘友平. 异硫氰酸苯酯柱前衍生高效液相色谱法测定薏苡仁中17种氨基酸的含量[J]. 食品与发酵工业, 2021, 47(13): 274-279.
[12] 肖泳, 周丛, 邓航, 冯燕英, 潘照, 唐吉旺, 袁列江. 高效液相色谱-串联质谱法测定动物源性食品中噻节因残留[J]. 食品与发酵工业, 2021, 47(13): 280-285.
[13] 杨青青, 王智荣, 彭林, 陈巧莉, 闻乐嫣, 郭泽航, 阚建全. 基于代谢组学分析两种产地青花椒中非挥发性成分的差异[J]. 食品与发酵工业, 2021, 47(12): 216-223.
[14] 薛霞, 赵慧男, 魏莉莉, 丁一, 宿书芳, 卢兰香, 王骏, 刘艳明, 胡梅. 超高效液相色谱-串联质谱法测定蜂蜜中五种水溶性维生素的含量[J]. 食品与发酵工业, 2021, 47(12): 250-256.
[15] 茹元朴, 陈君, 张明辉, 乔为仓, 赵军英, 侯俊财, 陈树兴, 陈历俊. 高效阴离子交换色谱-脉冲安培法测定母乳及婴儿配方粉中的唾液酸[J]. 食品与发酵工业, 2021, 47(11): 221-226.
[1] YUAN Feng-jiao et al . Heterologous Expression of phenylpyruvate reductase from Lactobacillus plantarum and Its Application in the Preparation of Phenyllactic Acid[J]. Food and Fermentation Industries, 2017, 43(11): 16 -21 .
[2] JIAO Cong-rui et al. Gene xynC from Aspergillus niger encoding a cold-active and acidophilic xylanase[J]. Food and Fermentation Industries, 2017, 43(11): 44 -50 .
[3] LI Bin et al.

Vacuum drying kinetics characteristics of Chinese prickly ash based on Weibull distribution [J]. Food and Fermentation Industries, 2017, 43(11): 58 -64 .

[4] NIU Yi-qing et al. Research on stress relaxation properties and shelf life prediction of ‘Hass’ Avocado[J]. Food and Fermentation Industries, 2017, 43(11): 75 .
[5] YAO Hang-hang et al. Composition and physicochemical properties of acid soluble collagen of skin of Yunnan bream[J]. Food and Fermentation Industries, 2017, 43(11): 81 .
[6] ZHAO Xiang-ying et al. Effect of Glucose on xylitol fermentation byCandida tropicalis SFX - Y9[J]. Food and Fermentation Industries, 2017, 43(11): 107 .
[7] ZHANG Zhe-yuan.et al. Effects of different total solids of goat milk on quality of goat milk yogurt #br# [J]. Food and Fermentation Industries, 2017, 43(11): 112 .
[8] ZHANG Dong et al. Effect of different amounts of salt on quality of bacon[J]. Food and Fermentation Industries, 2017, 43(11): 159 .
[9] WU Peng et al. The development of microwave cooked carrot chips based on domestic microwave oven[J]. Food and Fermentation Industries, 2017, 43(11): 180 .
[10] YANG Zhuo et al. Genesequencing andtraditionalmicrobialcultureforthedetectionof aerogeninswelledpacking soy sauce[J]. Food and Fermentation Industries, 2017, 43(11): 197 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn