Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (5): 1-6    DOI: 10.13995/j.cnki.11-1802/ts.025580
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
适应性进化和改造质粒稳定性促进枯草芽孢杆菌合成N-乙酰神经氨酸
钱蕾1,2, 刘延峰1,2, 李江华2*, 刘龙1,2, 堵国成1,2
1(工业生物技术教育部重点实验室(江南大学), 江苏 无锡, 214122)
2(江南大学 生物工程学院, 江苏 无锡, 214122)
Regulating the synthesis of N-acetylneuraminic acid based on adaptive evolution and plasmid stability modification in Bacillus subtilis
QIAN Lei1,2, LIU Yanfeng1,2, LI Jianghua1,2*, LIU Long1,2, DU Guocheng1,2
1(Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China)
2(College of Bioengineering, Jiangnan University, Wuxi 214122, China)
下载:  HTML  PDF (2699KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 N-乙酰神经氨酸(N-acetylneuraminic acid, NeuAc)作为营养化学品和药物中间体在保健品和医药领域具有广泛的应用。为了提升重组枯草芽孢杆菌(Bacillus subtilis)合成NeuAc的产量, 首先利用NeuAc生物传感器(NeuAc-Biosensor)调控抗生素抗性基因表达, 在抗生素存在条件下将细胞生长与NeuAc合成相关联。进而通过增加抗生素浓度进行适应性进化, 促进NeuAc合成效率提升。研究结果显示, 当利用NeuAc-Biosensor分别调控壮观霉素抗性基因(spc)和红霉素抗性基因(erm)时, 高产菌株能够在较高抗生素浓度条件下生长。通过在培养过程中逐步增加抗生素浓度开展适应性进化, 结果表明采用壮观霉素和红霉素进行双抗性适应性进化时, 进化获得的菌株中假阳性率(产量未提高的菌株比例)为46.7%, 显著低于采用壮观霉素或红霉素单一抗生素进化获得的菌株中假阳性率(73.3%和66.7%)。通过适应性进化与发酵验证得到1株NeuAc产量为(3.16±0.19)g/L的菌株, 产量比出发菌株提高了31.7%。为进一步解决发酵过程中重组B.subtilis质粒丢失的问题, 通过将必需基因folB(编码二氢喋呤醛缩酶, dihydroneopterin aldolase)插入携带NeuAc合成途径关键酶编码基因重组质粒并且敲除基因组中的folB基因, 质粒的丢失率由34.1%下降至11.8%。该研究提升了重组B.subtilis 合成NeuAc的产量和稳定性, 为重组B.subtilis发酵法生产NeuAc奠定了基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
钱蕾
刘延峰
李江华
刘龙
堵国成
关键词:  生物传感器  适应性进化  质粒稳定性  N-乙酰神经氨酸  枯草芽孢杆菌    
Abstract: N-acetylneuraminic acid (NeuAc) has applications as nutritional chemicals and pharmaceutical intermediates in the fields of health care products and medicine. To increase NeuAc production in Bacillus subtilis, NeuAc-biosensor was used to regulate the expression of antibiotic resistance genes, and cell growth was correlated with NeuAc synthesis in the presence of antibiotic, which was further used for adaptive evolution to promote the efficiency of NeuAc synthesis. The results showed that high-yielding strains could grow under conditions of higher antibiotic concentration. The adaptive evolution was carried out by gradually increasing the concentration of antibiotics. When NeuAc-Biosensor was used to regulate spc and erm for dual resistance (spectinomycin and erythromycin) adaptive evolution, the false positive rate (the proportion of strains with no increase in NeuAc production) was 46.7%, which was significantly lower than that (73.3% and 67.7%) of the strains obtained by the evolution of using single antibiotic of spectinomycin or erythromycin, respectively. Fermentation experiments verified that the production of NeuAc in evolutionary strain reached (3.16±0.19) g/L, which was 31.7% higher than the original strain. In order to further solve the problem of plasmid loss in recombinant B. subtilis during fermentation, the essential gene folB (encoding dihydroneopterin aldolase) was inserted into the recombinant plasmid carrying the gene encoding the key enzyme of NeuAc synthesis pathway with deletion of folB in the genome. The plasmid loss rate dropped from 34.1% to 11.8%. In this study, the yield and stability of NeuAc production was improved by recombinant B. subtilis, which lays a foundation for the industrial production of NeuAc by recombinant B. subtilis.
Key words:  biosensor    adaptive evolution    plasmid stability    N-acetylneuraminic acid    Bacillus subtilis
收稿日期:  2020-09-04      修回日期:  2020-09-21                发布日期:  2021-03-31      期的出版日期:  2021-03-15
基金资助: 国家重点研发计划项目(2018YFA0900300);国家自然科学基金项目(31972854);江苏省重点研发计划(社会发展)项目(BE2019628)
作者简介:  硕士研究生(李江华教授为通讯作者, E-mail:lijianghua@jiangnan.edu.cn)
引用本文:    
钱蕾,刘延峰,李江华,等. 适应性进化和改造质粒稳定性促进枯草芽孢杆菌合成N-乙酰神经氨酸[J]. 食品与发酵工业, 2021, 47(5): 1-6.
QIAN Lei,LIU Yanfeng,LI Jianghua,et al. Regulating the synthesis of N-acetylneuraminic acid based on adaptive evolution and plasmid stability modification in Bacillus subtilis[J]. Food and Fermentation Industries, 2021, 47(5): 1-6.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.025580  或          http://sf1970.cnif.cn/CN/Y2021/V47/I5/1
[1] CHENG J, ZHUANG W, TANG C, et al.Efficient immobilization of AGE and NAL enzymes onto functional amino resin as recyclable and high-performance biocatalyst[J].Bioprocess and Biosystems Engineering, 2017, 40(3):331-340.
[2] ZHU D, ZHAN X, WU J, et al.Efficient whole-cell biocatalyst for Neu5Ac production by manipulating synthetic, degradation and transmembrane pathways[J].Biotechnology Letters, 2017, 39(1):55-63.
[3] LUNDGREN B R, BODDY C N.Sialic acid and N-acylsialic acid analog production by fermentation of metabolically and genetically engineered Escherichia coli[J].Organic and Biomolecular Chemistry, 2007, 5(12):1 903-1 909.
[4] DROUILLARD S, MINE T, KAJIWARA H, et al.Efficient synthesis of 6′-sialyllactose, 6, 6′-disialyllactose, and 6′-KDO-lactose by metabolically engineered E.coli expressing a multifunctional sialyltransferase from the Photobacterium sp.JT-ISH-224[J].Carbohydr Res, 2010, 345(10):1 394-1 399.
[5] TEN BRUGGENCATE S J, BOVEE-OUDENHOVEN I M, FEITSMA A L, et al.Functional role and mechanisms of sialyllactose and other sialylated milk oligosaccharides[J].Nutrition Reviews, 2014, 72(6):377-389.
[6] LIU Y, ZHU Y, MA W, et al.Spatial modulation of key pathway enzymes by DNA-guided scaffold system and respiration chain engineering for improved N-acetylglucosamine production by Bacillus subtilis[J].Metabolic Engineering, 2014, 24:61-69.
[7] KANG J, GU P, WANG Y, et al.Engineering of an N-acetylneuraminic acid synthetic pathway in Escherichia coli[J].Metabolic Engineering, 2012, 14(6):623-629.
[8] UHDE A, BRUHL N, GOLDBECK O, et al.Transcription of sialic acid catabolism genes in Corynebacterium glutamicum is subject to catabolite repression and control by the transcriptional repressor NanR[J].Journal of Bacteriology, 2016, 198(16):2 204-2 218.
[9] SIEDLER S, STAHLHUT S G, MALLA S, et al.Novel biosensors based on flavonoid-responsive transcriptional regulators introduced into Escherichia coli[J].Metabolic Engineering, 2014, 21:2-8.
[10] ZHANG X, LIU Y, LIU L, et al.Modular pathway engineering of key carbon-precursor supply-pathways for improved N-acetylneuraminic acid production in Bacillus subtilis[J].Biotechnology and Bioengineering, 2018, 115(9):2 217-2 231.
[11] KALIVODA K A, STEENBERGEN S M, VIMR E R, et al.Regulation of sialic acid catabolism by the DNA binding protein nanr in Escherichia coli[J].Journal of Bacteriology, 2003, 185(16):4 806-4 815.
[12] WANG Z, ZHUANG W, CHENG J, et al.In vivo multienzyme complex coconstruction of N-acetylneuraminic acid lyase and N-acetylglucosamine-2-epimerase for biosynthesis of N-acetylneuraminic acid[J].Journal of Agricultural and Food Chemistry, 2017, 65(34):7 467-7 475.
[13] SHI S, CHOI Y W, ZHAO H, et al.Discovery and engineering of a 1-butanol biosensor in Saccharomyces cerevisiae[J].Bioresource Technology, 2017, 245(Pt B):1 343-1 351.
[14] SANDBERG T E, SALAZAR M J, WENG L L, et al.The emergence of adaptive laboratory evolution as an efficient tool for biological discovery and industrial biotechnology[J].Metabolic Engineering, 2019, 56:1-16.
[15] ZHANG R, YANG Y, WANG J, et al.Synthetic symbiosis combining plasmid displacement enables rapid construction of phenotype-stable strains[J].Metabolic Engineering, 2019, 55:85-91.
[16] ZHANG X, CAO Y, LIU Y, et al.Development and optimization of N-acetylneuraminic acid biosensors in Bacillus subtilis[J].Biotechnology and Applied Biochemistry, 2020, 67(4):693-705.
[17] GIBSON D G, BENDERS G A, ANDREWS-PFANNKOCH C, et al.Complete chemical synthesis, assembly, and cloning of a mycoplasma genitalium genome[J].Science, 2008, 319(5867):1 215-1 220.
[18] YAN X, YU H J, HONG Q, et al.Cre/lox system and PCR-based genome engineering in Bacillus subtilis[J].Applied and Environmental Microbiology, 2008, 74(17):5 556-5 562.
[19] ZHAO L, TIAN R, SHEN Q, et al.Pathway engineering of Bacillus subtilis for enhanced N-Acetylneuraminic acid production via whole-cell biocatalysis[J].Biotechnology Journal, 2019, 14(7).DOI:10.1002/biot.201800682.
[20] RAMAN S, ROGERS J K, TAYLOR N D, et al.Evolution-guided optimization of biosynthetic pathways[J].Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(50):17 803-17 808.
[21] NYERGES A, CSORGO B, NAGY I, et al.Conditional DNA repair mutants enable highly precise genome engineering[J].Nucleic Acids Res, 2014, 42(8):e62.
[22] SHUKAL S, CHEN X, ZHANG C.Systematic engineering for high-yield production of viridiflorol and amorphadiene in auxotrophic Escherichia coli[J].Metabolic Engineering, 2019, 55:170-178.
[1] 唐璎, 邓展瑞, 黄佳, 杨晓楠. 黄曲霉毒素B1降解菌株的鉴定及降解产物研究[J]. 食品与发酵工业, 2021, 47(7): 64-70.
[2] 曾伟主, 单小玉, 房峻, 周景文. 微液滴适应性进化强化大肠杆菌耐受高浓度L-山梨糖[J]. 食品与发酵工业, 2021, 47(1): 1-7.
[3] 杨心萍, 宋词, 张伟豪, 刘艳, 王洲, 薛正莲. 常压室温等离子体与5-溴尿嘧啶复合诱变及快速选育腺苷高产菌株[J]. 食品与发酵工业, 2020, 46(9): 73-77.
[4] 李亿, 秦艳, 申乃坤, 朱婧, 梁戈, 王青艳. 酿酒酵母pdc基因缺陷菌株的构建及其丙酮酸发酵特性[J]. 食品与发酵工业, 2020, 46(8): 7-13.
[5] 张大伟, 刘德华, 黄钦钦, 田亚平. 食品级高产亮氨酸氨肽酶重组Bacillus subtilis的构建和发酵优化[J]. 食品与发酵工业, 2020, 46(8): 1-6.
[6] 胡凡, 宿玲恰, 吴敬. Thermobifida fusca麦芽三糖淀粉酶的重组表达及其在麦芽三糖制备中的应用[J]. 食品与发酵工业, 2020, 46(5): 23-30.
[7] 郭佳欣, 张培基, 刘丁玉, 洪坤强, 陈涛, 王智文. 常压室温等离子体诱变选育高产核黄素枯草芽孢杆菌[J]. 食品与发酵工业, 2020, 46(4): 28-33.
[8] 付云, 赵谋明, 卢美杉, 余炼, 刘小玲. 枯草芽孢杆菌YA215发酵螺旋藻渣产抑菌活性的工艺[J]. 食品与发酵工业, 2020, 46(4): 146-152.
[9] 张丽杰, 张怀志, 徐岩. 枯草芽孢杆菌Nr.5和底物添加促进酱油中吡嗪类物质合成[J]. 食品与发酵工业, 2020, 46(21): 1-8.
[10] 周胜虎, 毛银, 邓禹. 发酵过程中时空水平的动态调控策略研究进展[J]. 食品与发酵工业, 2020, 46(21): 277-283.
[11] 陈彬和, 赵炳天, 孙亚娟, 李云兴. 大豆发酵液的抗氧化活性[J]. 食品与发酵工业, 2020, 46(17): 119-124.
[12] 冒鑫哲, 彭政, 周冠宇, 堵国成, 张娟. 枯草芽孢杆菌高产角蛋白酶发酵条件优化[J]. 食品与发酵工业, 2020, 46(17): 138-144.
[13] 孙颖颖, 董鹏程, 朱立贤, 张一敏, 罗欣, 毛衍伟. 食源性致病菌快速检测研究进展[J]. 食品与发酵工业, 2020, 46(17): 264-270.
[14] 曾慧君, 付诗慧, 晏涛, 杨小平, 刘萍, 徐玮, 董秋花, 郦娟. 核酸适配体生物传感器在食源性致病菌检测中的应用[J]. 食品与发酵工业, 2020, 46(17): 277-284.
[15] ITUZE KUBANA Marie Claudine, 乔郅钠, 徐美娟, 陈旭升, 杨套伟, 张显, 邵明龙, 饶志明. 白色链霉菌ε-聚赖氨酸合酶的异源表达及重组菌全细胞合成ε-聚赖氨酸的条件优化[J]. 食品与发酵工业, 2020, 46(16): 1-6.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn