Please wait a minute...
食品与发酵工业  2021, Vol. 47 Issue (9): 307-313    DOI: 10.13995/j.cnki.11-1802/ts.025599
  综述与专题评论 本期目录 | 过刊浏览 | 高级检索 |
芦楠, 李宇虹, 陈宁, 张成林*
(天津科技大学 生物工程学院,天津,300457)
Advances on metabolic engineering of L-isoleucine and its derivatives
LU Nan, LI Yuhong, CHEN Ning, ZHANG Chenglin*
(College of Biotechnology,Tianjin University of Science and Technology,Tianjin 300457,China)
下载:  HTML  PDF (1540KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 L-异亮氨酸属于分支链氨基酸,是一种生糖兼生酮氨基酸,为人体8种必需氨基酸之一,广泛应用于医药、化妆品、食品等诸多领域。工业化生产L-异亮氨酸主要采用谷氨酸棒杆菌和大肠杆菌发酵法合成。该文分析比较了谷氨酸棒杆菌和大肠杆菌L-异亮氨酸的生物合成途径及代谢调控机制;尽管二者代谢途径相同,但关键酶多样性及其调控方式存在差异;在此基础上,从解除关键酶反馈抑制作用、切断或弱化支路代谢途径、修饰转运系统以及增强辅助因子的供应4个层面综述了L-异亮氨酸及衍生物代谢工程改造策略,旨在为其生产菌株的选育提供参考。
E-mail Alert
关键词:  L-异亮氨酸  生物合成  代谢改造  谷氨酸棒杆菌    
Abstract: L-Isoleucine belongs to the branched chain amino acids. It is also a glucogenic and ketogenic amino acid. As one of the eight essential amino acids for human, it has been widely used in medicine, cosmetics and food industries. L-Isoleucine is industrially produced via fermentation method by Corynebacterium glutamicum and Escherichia coli. In this study, the biosynthesis pathway and metabolic regulation mechanisms of L-isoleucine in C. glutamicum and E. coli were compared. Despite the similarity of the two pathways, there are differences in the diversity and regulation modes of key enzymes. Furthermore, metabolic engineering strategies for production of L-isoleucine and its derivatives were overviewed on removing the feedback inhibition of key enzymes, blocking or weakening the branched pathways, modifying the transport system and enhancing the supply of co-factors, aiming to provide references for breeding production strain.
Key words:  L-isoleucine    biosynthesis    metabolic engineering    Corynebacterium glutamicum
收稿日期:  2020-09-07      修回日期:  2020-10-09           出版日期:  2021-05-15      发布日期:  2021-06-03      期的出版日期:  2021-05-15
基金资助: 国家自然科学基金项目(31300069,31770053);中国博士后科学基金项目(2017M611170,2018T110662)
作者简介:  硕士研究生(张成林副教授为通讯作者,
芦楠,李宇虹,陈宁,等. L-异亮氨酸及其衍生物代谢工程研究进展[J]. 食品与发酵工业, 2021, 47(9): 307-313.
LU Nan,LI Yuhong,CHEN Ning,et al. Advances on metabolic engineering of L-isoleucine and its derivatives[J]. Food and Fermentation Industries, 2021, 47(9): 307-313.
链接本文:  或
[1] 陈宁.氨基酸工艺学[M].第二版.北京:中国轻工业出版社,2020.
CHEN N.Amino acid technology[M].Second Edition.Beijng:China Light Industry Press,2020.
[2] LI Y J,WEI H B,WANG T,et al.Current status on metabolic engineering for the production of L-aspartate family amino acids and derivatives[J].Bioresource Technology,2017,245(Pt B):1 588-1 602.
[3] GU C S,MAO X B,CHEN D W,et al.L-isoleucine plays an important role for maintaining immune function[J].Current Protein Peptide Science,2019,20(7):644-651.
[4] BECKER J,GIESSELMANN G,HOFFMANN S L,et al.Corynebacterium glutamicum for sustainable bioproduction:From metabolic physiology to systems metabolic engineering[J].Advances Biochemical Engineer Biotechnology,2018,162:217-263.
[5] KORTHIKUNTA V,PANDEY J,SINGH R,et al.In vitro anti-hyperglycemic activity of 4-hydroxyisoleucine derivatives[J].Phytomedicine,2015,22(1):66-70.
[6] ZHANG C L,MA J,LI Z X,et al.A strategy for L-isoleucine dioxygenase screening and 4-hydroxyisoleucine production by resting cells[J].Bioengineered,2018,9(1):72-79.
[7] D'ESTE M,ALVARADO-MORALES M,ANGELIDAKI I.Amino acids production focusing on fermentation technologies-A review[J].Biotechnology Advances,2018,36(1):14-25.
[8] YAMAMOTO K,TSUCHISAKA A,YUKAWA H.Branched-chain amino acids[J].Advances Biochemical Engineer Biotechnology,2017,159:103-128.
[9] DONG X Y,ZHAO Y,ZHAO J X,et al.Characterization of aspartate kinase and homoserine dehydrogenase from Corynebacterium glutamicum IWJ001 and systematic investigation of L-isoleucine biosynthesis[J].Journal of Industrial Microbiology and Biotechnology,2016,43(6):873-885.
[10] PARK J H,OH J E,LEE K H,et al.Rational design of Escherichia coli for L-isoleucine production[J].ACS Synthetic Biology,2012,1(11):532-540.
[11] YOKOTA A,SAWADA K,WADA M.Boosting anaplerotic reactions by pyruvate kinase gene deletion and phosphoenolpyruvate carboxylase desensitization for glutamic acid and lysine production in Corynebacterium glutamicum[J].Advances in Biochemical Engineering-Biotechnology,2017,159:181-198.
[12] 朱福周, 芦楠,李宇虹.增强回补途径对谷氨酸棒状杆菌合成L-异亮氨酸的影响[J].食品与发酵工业,2020,46(2):11-17.
ZHU F,LU N,LI Y.Comparing effects of enhancing anaplerotic pathways on L-isoleucine production performance by Corynebacterium glutamicum YI[J].Food and Fermentation Industries,2020,46(2):11-17.
[13] ZHAO L,LU Y,YANG J,et al.Expression regulation of multiple key genes to improve L-threonine in Escherichia coli [J].Microbial Cell Factories,2020,19(1):46.
[14] QIN T,HU X Q,HU J Y,et al.Metabolic engineering of Corynebacterium glutamicum strain ATCC13032 to produce L-methionine[J].Biotechnology and Applied Biochemistry,2015,62(4):563-573.
[15] PETIT C,KIM Y,LEE S K,et al.Reduction of feedback inhibition in homoserine kinase (ThrB) of Corynebacterium glutamicum enhances L-threonine biosynthesis[J].ACS Omega,2018,3(1):1 178-1 186.
[16] GUO Y,XU J,HAN M,et al.Generation of mutant threonine dehydratase and its effects on L-isoleucine synthesis in Corynebacterium glutamicum[J].World Journal of Microbiology and Biotechnology,2015,31(9):1 369-1 377.
[17] 张海灵, 李颜颜,王小元.代谢工程改造谷氨酸棒状杆菌合成及分泌途径生产L-缬氨酸[J].生物工程学报,2018,34(10):1 606-1 619.
ZHANG H,LI Y,WANG X.Metabolic engineering of L-valine synthesis and secretory pathways in Corynebacterium glutamicum for higher production[J].Chinese Journal of Biotechnology,2018,34(10):1 606-1 619.
[18] MORBACH S,JUNGER C,SAHM H,et al.Attenuation control of ilvBNC in Corynebacterium glutamicum:evidence of leader peptide formation without the presence of a ribosome binding site[J].Journal of Bioscience and Bioengineering,2000,90(5):501-507.
[19] ZHANG H L,LI Y Y,WANG C H,et al.Understanding the high L-valine production in Corynebacterium glutamicum VWB-1 using transcriptomics and proteomics[J].Scientific Reports,2018,8(1):3 632.
[20] VOGT M,KRUMBACH K,BANG W G,et al.The contest for precursors:Channelling L-isoleucine synthesis in Corynebacterium glutamicum without byproduct formation[J].Applied Microbiology and Biotechnology,2015,99(2):791-800.
[21] WANG J,WEN B,WANG J,et al.Enhancing (L)-isoleucine production by thrABC overexpression combined with alaT deletion in Corynebacterium glutamicum[J].Applied Biochemistry and Biotechnology,2013,171(1):20-30.
[22] GUILLOUET S,RODAL A,AN G H,et al.Metabolic redirection of carbon flow toward L-isoleucine by expressing a catabolic threonine dehydratase in a threonine-overproducing Corynebacterium glutamicum [J].Applied Microbiology and Biotechnology,2001,57(5-6):667-673.
[23] GUILLOUET S,RODAL A A,AN G,et al.Expression of the Escherichia coli catabolic threonine dehydratase in Corynebacterium glutamicum and its effect on L-isoleucine production[J].Applied and Environmental Microbiology,1999,65(7):3 100-3 107.
[24] ZHANG Y,LIU Y,ZHANG S,et al.Metabolic engineering of Corynebacterium glutamicum WM001 to improve L-isoleucine production[J].Biotechnology and Applied Biochemistry,2020.DOI:10.1002/bab.1963.
[25] YIN L,HU X,XU D,et al.Co-expression of feedback-resistant threonine dehydratase and acetohydroxy acid synthase increase L-isoleucine production in Corynebacterium glutamicum [J].Metabolic Engineering,2012,14(5):542-550.
[26] DONG X Y,ZHAO Y,HU J Y,et al.Attenuating L-lysine production by deletion of ddh and lysE and their effect on L-threonine and L-isoleucine production in Corynebacterium glutamicum[J].Enzyme and Microbial Technology,2016,93-94:70-78.
[27] MA W J,WANG J L,LI Y,et al.Cysteine synthase A overexpression in Corynebacterium glutamicum enhances L-isoleucine production[J].Biotechnology and Applied Biochemistry,2019,66(1):74-81.
[28] YIN L,SHI F,HU X,et al.Increasing L-isoleucine production in Corynebacterium glutamicum by overexpressing global regulator Lrp and two-component export system BrnFE[J].Journal of Applied Microbiology,2013,114(5):1 369-1 377.
[29] XIE X X,XU L L,SHI J M,et al.Effect of transport proteins on L-isoleucine production with the L-isoleucine-producing strain Corynebacterium glutamicum YILW[J].Journal of Industrial Microbiology and Biotechnology,2012,39(10):1 549-1 556.
[30] ZHAO J X,HU X Q,LI Y,et al.Overexpression of ribosome elongation factor G and recycling factor increases L-isoleucine production in Corynebacterium glutamicum[J].Applied Microbiology and Biotechnology,2015,99(11):4 795-4 805.
[31] SHI F,LI K,HUAN X J,et al.Expression of NAD(H) kinase and glucose-6-phosphate dehydrogenase improve NADPH supply and L-isoleucine biosynthesis in Corynebacterium glutamicum ssp. lactofermentum[J].Applied Biochemistry and Biotechnology,2013,171(2):504-521.
[32] MA W J,WANG J L,LI Y,et al.Enhancing pentose phosphate pathway in Corynebacterium glutamicum to improve L-isoleucine production[J].Biotechnology and Applied Biochemistry,2016,63(6):877-885.
[33] SHI F,ZHANG S P,LI Y F,et al.Enhancement of substrate supply and ido expression to improve 4-hydroxyisoleucine production in recombinant Corynebacterium glutamicum ssp.lactofermentum[J].Applied Microbiology and Biotechnology,2019,103(10):4 113-4 124.
[34] TAN S,SHI F,LIU H,et al.Dynamic control of 4-hydroxyisoleucine biosynthesis by modified L-isoleucine biosensor in recombinant Corynebacterium glutamicum[J].ACS Synthetic Biology,2020,9(9):2 378-2 389.
[35] SHI F,ZHANG M L,LI Y F,et al.Sufficient NADPH supply and pknG deletion improve 4-hydroxyisoleucine production in recombinant Corynebacterium glutamicum[J].Enzyme and Microbial Technology,2018,115:1-8.
[36] KIVERO A D,NOVIKOVA A E,SMIRNOV S V.Modification of E.coli central metabolism to optimize the biotransformation of L-isoleucine into 4-hydroxyisoleucine by enzymatic hydroxylation[J].Applied Microbiology and Biotechnology,2012,48(7):639-644.
[37] SHI F,NIU T F,FANG H M.4-Hydroxyisoleucine production of recombinant Corynebacterium glutamicum ssp.lactofermentum under optimal corn steep liquor limitation[J].Applied Microbiology and Biotechnology,2015,99(9):3 851-3 863.
[38] SHI F,FANG H M,NIU T F,et al.Overexpression of ppc and lysC to improve the production of 4-hydroxyisoleucine and its precursor L-isoleucine in recombinant Corynebacterium glutamicum ssp. lactofermentum[J].Enzyme and Microbial Technology,2016,87-88:79-85.
[39] ZHANG C L,LI Y J,MA J,et al.High production of 4-hydroxyisoleucine in Corynebacterium glutamicum by multistep metabolic engineering[J].Metabolic Engineering,2018,49:287-298.
[40] JEON J M,KIM H J,BHATIA S K,et al.Application of acetyl-CoA acetyltransferase (AtoAD) in Escherichia coli to increase 3-hydroxyvalerate fraction in poly (3-hydroxybutyrate-co-3-hydroxyvalerate)[J].Bioprocess and Biosystems Engineering,2017,40(5):781-789.
[41] MA W J,WANG J L,LI Y,et al.Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) co-produced with L-isoleucine in Corynebacterium glutamicum WM001[J].Microbial Cell Factory,2018,17(1):93.
[42] HASHIGUCHI K,MATSUI H,KURAHASHI O.Effects of a feedback-resistant aspartokinase III gene on L-isoleucine production in Escherichia coli K-12[J].Bioscience Biotechnology and Biochemistry,1999,63(11):2 023-2 024.
[1] 熊海波, 陈志超, 曹华杰, 徐庆阳. 全营养流加对谷氨酸棒杆菌发酵产L-异亮氨酸的影响[J]. 食品与发酵工业, 2021, 47(6): 11-17.
[2] 朱雨婕, 代安然, 李佳铭, 吴凡, 杨崇婧, 陈磊. 金针菇无细胞滤液合成纳米银颗粒[J]. 食品与发酵工业, 2021, 47(5): 71-78.
[3] 熊海波, 刘云鹏, 徐庆阳. 超声对谷氨酸棒杆菌发酵L-异亮氨酸的影响[J]. 食品与发酵工业, 2021, 47(4): 40-46.
[4] 王祺, 张军, 乔晓妮, 何增国. 片球菌素的来源、生物合成、抑菌机理及其构效关系的研究进展[J]. 食品与发酵工业, 2020, 46(9): 278-284.
[5] 冉艳朋, 徐沙, 李由然, 蒋玮, 顾正华, 丁重阳, 张梁, 石贵阳. 代谢工程改造酿酒酵母促进L-苯丙氨酸的合成[J]. 食品与发酵工业, 2020, 46(9): 1-9.
[6] 张阳玲, 吴昊, 乔建军, 李艳妮. 乳酸链球菌肽的应用及研究进展[J]. 食品与发酵工业, 2020, 46(7): 289-295.
[7] 赵嫚, 彭莉, 成浩, 应向贤, 汪钊. 微生物甲硫氨酸合成调控的综合研究进展与展望[J]. 食品与发酵工业, 2020, 46(24): 257-264.
[8] 王帅, 庄以彬, 刘浩, 毕慧萍, 刘涛. 大肠杆菌混菌发酵生产咖啡醇糖苷[J]. 食品与发酵工业, 2020, 46(23): 7-13.
[9] 宁亚维, 马梦戈, 杨正, 侯琳琳, 赵忠情, 陈艺, 王志新, 贾英民. γ-氨基丁酸的制备方法及其功能食品研究进展[J]. 食品与发酵工业, 2020, 46(23): 238-247.
[10] 李国玮, 游淳. 二糖磷酸化酶及其在体外合成生物学中的应用[J]. 食品与发酵工业, 2020, 46(21): 284-291.
[11] 胡立涛, 王阳, 李佳莲, 周思延, 王道安, 尹国斌, 刘京京, 康振, 陈坚. 代谢工程改造谷氨酸棒杆菌合成透明质酸[J]. 食品与发酵工业, 2020, 46(18): 1-7.
[12] 杜丽红, 熊海波, 徐达, 徐庆阳, 陈宁. 利用谷氨酸棒杆菌CRISPRi系统构建L-缬氨酸高产菌株[J]. 食品与发酵工业, 2020, 46(17): 1-8.
[13] 李雅婷, 周丽, 周哲敏. 大肠杆菌中三酶耦联合成α-酮异戊酸[J]. 食品与发酵工业, 2020, 46(13): 18-23.
[14] 马振锋, 徐美娟, 杨套伟, 张显, 邵明龙, 中西秀树, 饶志明. 以葡萄糖为底物合成2-吡咯烷酮重组谷氨酸棒杆菌的构建及发酵研究[J]. 食品与发酵工业, 2020, 46(11): 1-8.
[15] 颜文斌, 张晓梅, 史劲松, 许正宏. rhtAtyrP对谷氨酸棒杆菌产L-丝氨酸的影响分析[J]. 食品与发酵工业, 2020, 46(11): 9-16.
No Suggested Reading articles found!
Full text



版权所有 © 《食品与发酵工业》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持