Effects of substrates and environmental factors on growth kinetics of Shewanella putrefaciens and Pseudomonas spp.isolated from fish
ZHU Lin1,2, GUO Quanyou1*
1(East China Sea Fisheries Research Institute,Chinese Academy of Fishery Sciences,Shanghai 200090,China) 2(University of Warwick,School of Life science,Coventry CV4 7AL,UK)
Abstract: Aquatic products are putrefactive, which is mainly resulted from microorganisms. At low temperature and aerobic storage, Shewanella putrefaciens and Pseudomonas spp. are the specific spoilage organisms of marine fish and freshwater fish, respectively. To investigate the effect of substrates and environmental factors on specific spoilage organisms, the growth kinetics of S. putrefaciens and Pseudomonas spp. isolated from large yellow croaker and tilapia respectively were analyzed in different substrate, temperature, pH, and NaCl solution. The growth curve was fitted using Gompertz equation. The kinetic parameters were recorded and used to analyze the effect of environmental factors on maximum specific growth rate (μmax) and lag phage (λ). Then the Belehradek equation was used to describe the relation between their μmax and temperature. The results showed that substrate had influence on the growth of S. putrefaciens and Pseudomonas spp.; while temperature had significant influence on their growth, which became the determining factor of spoilage rate; pH had an influence on S. putrefaciens, which grew faster in pH 7 than in pH 6, while Pseudomonas spp. had similar growth rates in pH 7 and pH 6; neither of them could grow in pH 4 and pH 5; the growth of S. putrefaciens was influenced by the concentration of NaCl solution notably, its μmax and λ decreased with the increase of NaCl concentration. This research aims to provide support for exploring the screening of spoilage bacteria regulatory factors, targeting bacterial inhibition and prolonging product shelf life.
朱琳,郭全友. 底物和环境因子对鱼源腐败希瓦氏菌和假单胞菌生长动力学的影响[J]. 食品与发酵工业, 2021, 47(7): 58-63.
ZHU Lin,GUO Quanyou. Effects of substrates and environmental factors on growth kinetics of Shewanella putrefaciens and Pseudomonas spp.isolated from fish[J]. Food and Fermentation Industries, 2021, 47(7): 58-63.
农业部渔业渔政管理局.2020中国渔业统计年鉴[M].北京:中国农业出版社,2020.The People’s Republic of China Ministry of Agriculture,Fisheries Bureau.2020 China fishery statistical yearbook[M].Beijing:China Agricultural Press,2020.
[2]
励建荣.海水鱼类腐败机制及其保鲜技术研究进展[J].中国食品学报,2018,18(5):1-11.LI J R.Research progress on spoilage mechanism and preservation technology of marine fish[J].Journal of Chinese Institute of Food Science and Technology,2018,18(5):1-11.
[3]
GHALY A,DAVE D,BUDGE S M,et al.Fish spoilage mechanisms and preservation techniques:Review[J].American Journal of Applied Sciences,2010,7:859-877.
[4]
GRAM L,HUSS H H.Microbiological spoilage of fish and fish products[J].International Journal of Food Microbiology,1996,33(1):121-137.
[5]
SERIO A,FUSELLA G C,LÓPEZ C C,et al.A survey on bacteria isolated as hydrogen sulfide-producers from marine fish[J].Food Control,2014,39:111-118.
[6]
KNUT R,TOVE M,SIGRUN H E,HILDE N.Explorative multivariate analyses of 16S rRNA gene data from microbial communities in modified-atmosphere-packed salmon and coalfish[J].Applied and Environmental Microbiology,2004,70(8):5 010-5 018.
[7]
GENNARI M,TOMASELLI S,COTRONA V.The microflora of fresh and spoiled sardines (Sardina pilchardus) caught in Adriatic (Mediterranean) sea and stored in ice[J].Food Microbiology,1999,16(1):15-28.
[8]
朱彦祺,郭全友,姜朝军,等.新鲜大黄鱼优势腐败菌碳源利用的差异性分析[J].食品科学,2018,39(16):176-185.ZHU Y Q,GUO Q Y,JIANG C J,et al.Analysis of the difference in carbon source utilization profiles of the dominant spoilage bacteria in fresh Pseudosciaena crocea stored at different temperatures[J].Food Science,2018,39(16):176-185.
[9]
崔正翠,许钟,杨宪时,等.大菱鲆腐败菌生长动力学研究和货架期预测[J].海洋渔业,2010,32(4):454-460.CUI Z C,XU Z,YANG X S,et al.Microbial growth kinetics model of spoilage organisms and shelf life prediction for Scophthalmus maximus[J].Marine Fishery,2010,32(4):454-460.
[10]
杨宪时,郭全友,许钟.罗非鱼冷藏过程细菌种群的变化[J].中国水产科学,2008,15(6):1 050-1 055.YANG X S,GUO Q Y,XU Z.Bacterial species changes in cultured tilapia during chilled storage[J].Journal of Fishery Sciences of China,2008,15(6):1 050-1 055.
[11]
张小伟,许钟,郭全友,等.去除内脏对冰藏鲤鱼感官、化学和微生物变化的影响[J].中国水产科学,2010,17(2):337-342.ZHANG X W,XU Z,GUO Q Y,et al.Effect of gutting on sensory chemical and microbiological changes of carp (Cyprinus carpio) stored in ice[J].Journal of Fishery Sciences of China,2010,17(2):337-343.
[12]
李凤梅.ε-聚赖氨酸复合物对大肠杆菌和沙门氏菌抑制作用研究[J].青岛农业大学学报(自然科学版),2009,188(3):90-93.LI F M.Study of inhibition effects of ε-Polylysine on Escherichia coli and Salmonella[J].Journal of Qingdao Agricultural University (Natural Science),2009,188(3):90-93.
[13]
李学英,许钟,郭全友,等.大黄鱼冷藏过程中的鲜度变化[J].中国水产科学,2009,16(3):442-450.LI X Y,XU Z,GUO Q Y,et al.Changes of freshness in cultured Pseudosciaena crocea during chilled storage[J].Journal of Fishery Sciences of China,2009,16(3):442-450.
[14]
ZWIETERING M H,JONGENOURGER I,ROMBOUTS F M,et al.Modeling of the bacterial growth curve[J].Applied and Environmental Microbiology,1990,56(13):1 875-1 881
[15]
DAVEY K R.A predictive model for combined temperature and water activity on microbial growth during the growth phase[J].Journal of Applied Microbiology,1989,67:483-488.
[16]
许振伟, 李学英 杨宪时,等.冷藏鲤鱼和罗非鱼优势腐败菌腐败能力分析[J].食品科学,2012,33(4):243-246.XU Z W,LI X Y,Analysis of spoilage ability of dominant spoilage bacteria from stored chilled Cyprinus carpio and Oreochromis niloticus[J].Food Science,2012,33(4):243-246.
[17]
修艳辉,郭全友,姜朝军.pH、水分活度和NaCl对腐败希瓦氏菌生长/非生长界限及生长动力学参数的影响[J].现代食品科技,2016,32(6):156-162;199.XIU Y H,GUO Q Y,JIANG C J.Effect of pH,water activity,and common salt on the growth/no growth boundary and growth kinetic parameters of Shewanella putrefaciens[J].Modern Food Science and Technology.2016,32(06):156-162;199.
[18]
仪淑敏,王嵬,励建荣,等.茶多酚对假单胞菌抑菌机理研究[J].肉类工业,2011,32(4):376-382.YI S M,WANG W,LI J R,et al.Antimicrobial action mechanism of tea polyphenols to P.aeruginosa[J].Meat Industry,2011,32(4):376-382.
[19]
朱彦祺, 郭全友,李保国,等.不同温度下腐败希瓦氏菌(Shewanella putrefaciens)生长动力学模型的比较与评价[J].食品科学,2016,37(13):147-152.ZHU Y Q,GUO Q Y,LI B G,et al.Comparison and evaluation of models for the growth of Shewanella putrefaciens at different temperatures[J].Food Science,2016,37(13):147-152.
[20]
李媛惠.生鲜调理鸡肉货架期预测模型评价与统一化研究[D].郑州:河南农业大学,2013:26-54.LI Y H.Evaluation and unification of shelf life prediction model of fresh processed chicken[D].Zhengzhou:Henan Agricultural University,2013:26-54.
[21]
范新光.鲜切西兰花减压冷藏保鲜技术与货架期预测模型的研究[D].烟台:烟台大学,2014.FANG X G.Study on pressure-reduced refrigerating technique and shelf life prediction of fresh cut broccoli[D].Yantai:Yantai University,2014.
[22]
何国庆,丁立孝,宫春波.现代食品微生物学[M].北京:中国农业大学出版社,2008:96-100.HE G Q,DING L X,GONG C B.Modern food microbiology[M].Beijing:China Agriculture University Press,2008:96-100.