Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (7): 21-26    DOI: 10.13995/j.cnki.11-1802/ts.025672
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
产谷胱甘肽毕赤酵母工程菌的构建及能量调控
高宇豪1,2,3, 吴勇杰5, 朱亚鑫1,2,3, 付静5, 徐建国5, 王松涛1,2, 徐国强1,2,3, 张晓梅4, 史劲松4, 许正宏1,2,3
1(江南大学 生物工程学院,江苏 无锡,214122)
2(工业生物技术教育部重点实验室(江南大学),江苏 无锡,214122)
3(粮食发酵工艺与技术国家工程实验室(江南大学),江苏 无锡,214122)
4(江南大学 药学院,江苏 无锡,214122)
5(无锡福祈制药有限公司,江苏 无锡,214100)
Construction and energy regulation of engineered glutathione-producing Pichia pastoris
GAO Yuhao1,2,3, WU Yongjie5, ZHU Yaxin1,2,3, FU Jing5, XU Jianguo5, WANG Songtao1,2, XU Guoqiang1,2,3*, ZHANG Xiaomei4, SHI Jinsong4, XU Zhenghong1,2,3
1(The Key Laboratory of Industrial Biotechnology,Ministry of Education,Jiangnan University,Wuxi 214122,China)
2(School of Biotechnology,Jiangnan University,Wuxi 214122,China)
3(National Engineering Laboratory for Cereal Fermentation Technology,Jiangnan University,Wuxi 214122,China)
4(School of Pharmaceutical Sciences,Jiangnan University,Wuxi 214122,China)
5(Wuxi Fuqi Pharmaceutical Co.Ltd.,Wuxi 214100,China)
下载:  HTML   PDF (2091KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 谷胱甘肽(glutathione, GSH)是生物体内重要非编码且含有巯基的三肽类物质,具有调节和保护等功能,在医药、食品等领域有着广泛的应用。目前,工业上主要通过高密度发酵生产GSH,ATP的供应往往成为GSH生产的限制因素。该文以毕赤酵母GS115为出发菌株,整合串联表达来源于酿酒酵母的Scgsh1Scgsh2基因,在添加氨基酸前体的条件下,GSH质量浓度可达(302.27±5.06) mg/L,较改造前提高2.88倍。之后优化了柠檬酸钠的添加条件,摇瓶水平最高可达(371.12±8.47) mg/L。最后对工程菌的上罐发酵,通过控制乙醇质量浓度优化葡萄糖的补料速率,实现两阶段高效合成GSH,菌体生物量OD600最高可达257,发酵68 h时GSH产量最高可达2 000 mg/L。该研究为GSH的工业化生产提供了策略参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高宇豪
吴勇杰
朱亚鑫
付静
徐建国
王松涛
徐国强
张晓梅
史劲松
许正宏
关键词:  毕赤酵母  谷胱甘肽  异源表达  柠檬酸钠  发酵    
Abstract: Glutathione is an important non-coding sulfhydryl-containing tripeptide substance in the organism.It has functions such as regulation and protection,and has a wide range of applications in food and medical industries.Recently,glutathione is mainly produced through high cell density fermentation in the industry,and the supply of ATP becomes a limiting factor for GSH production.In this paper, Pichia pastoris GS115 was used as the original strain to heterologously express Scgsh1 and Scgsh2 genes derived from Saccharomyces cerevisiae.With the addition of amino acid precursor, the GSH concentration reached (302.27±5.06) mg/L, which was 2.88 times higher than before.And then, combined with the optimization of sodium citrate addition conditions, the highest GSH concentration in shake flask reached (371.12±8.47) mg/L.Finally, fermentation of the engineered strain was carried out in 100 L tank.By controlling the ethanol concentration to optimize the feed rate of glucose, the two-stage efficient synthesis of glutathione was realized.The maximum biomass OD600 reached 257, and the highest concentration of GSH reached 2 000 mg/L at 68 h.
Key words:  Pichia pastoris    glutathione    heterologous expression    sodium citrate    fermentation
收稿日期:  2020-09-15      修回日期:  2020-10-14           出版日期:  2021-04-15      发布日期:  2021-05-20      期的出版日期:  2021-04-15
基金资助: 江苏省自然基金面上项目(BK20191333)
作者简介:  硕士研究生(徐国强副教授为通讯作者,E-mail:xuguoqiang@jiangnan.edu.cn)
引用本文:    
高宇豪,吴勇杰,朱亚鑫,等. 产谷胱甘肽毕赤酵母工程菌的构建及能量调控[J]. 食品与发酵工业, 2021, 47(7): 21-26.
GAO Yuhao,WU Yongjie,ZHU Yaxin,et al. Construction and energy regulation of engineered glutathione-producing Pichia pastoris[J]. Food and Fermentation Industries, 2021, 47(7): 21-26.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.025672  或          http://sf1970.cnif.cn/CN/Y2021/V47/I7/21
[1] SCHMACHT M,LORENZ E,SENZ M.Microbial production of glutathione[J].World Journal of Microbiology & Biotechology,2017,33(6):106.
[2] 崔筱琳,王凤山.谷胱甘肽防治疾病的研究进展[J].中国现代应用药学,2017,34(4):631-636.CUI X L,WANG F S.Research progress of glutathione in the prevention and treatment of diseases[J].Chinese Journal of Modern Applied Pharmacy,2017,34(4):631-636.
[3] LU S C.Regulation of glutathione synthesis.[J].Molecular Aspects of Medicine,2009,30(1-2):42-59.
[4] WANG C,ZHANG J,WU H,et al.Heterologous gshF gene expression in various vector systems in Escherichia coli for enhanced glutathione production[J].Journal of Biotechnology,2015,214:63-68.
[5] 王大慧,卫功元.谷胱甘肽的应用前景及生产研究现状[J].化学与生物工程,2004,21(3):10-12.WANG D H,WEI G Y.The application prospect of glutathione and current research on glutathione production[J].Chemistry & Bioengineering,2004,21(3):10-12.
[6] ZHANG X,WU H,HUANG B,et al.One-pot synthesis of glutathione by a two-enzyme cascade using a thermophilic ATP regeneration system[J].Journal of Biotechnology,2017,241:163-169.
[7] CHEN J L,XIE L,CAI J J,et al.Enzymatic synthesis of glutathione using engineered Saccharomyces cerevisiae[J].Biotechnology Letters,2013,35(8):1 259-1 264.
[8] CAO H,LI C C,ZHAO J,et al.Enzymatic production of glutathione coupling with an ATP regeneration system based on polyphosphate kinase[J].Applied Biochemistry & Biotechnology,2018,185(2):385-395.
[9] SHAO N,WANG D,WEI G,et al.Screening of Candida utilis and medium optimization for co-production of S-adenosylmethionine and glutathione[J].Korean Journal of Chemical Engineering,2010,27(6):1 847-1 853.
[10] ALFAFARA C G,KANDA A,SHIOI T,et al.Effect of amino acids on glutathione production by Saccharomyces cerevisiae[J].Applied Microbiology & Biotechnology,1992,36(4):538-540.
[11] LIANG G B,DU G C,CHEN J.A novel strategy of enhanced glutathione production in high cell density cultivation of Candida utilis—cysteine addition combined with dissolved oxygen controlling[J].Enzyme & Microbial Technology,2008,42(3):284-289.
[12] LIAO X Y,SHEN W,CHEN J,et al.Improved glutathione production by gene expression in Escherichia coli[J].Letters in Applied Microbiology,2010,43(2):211-214.
[13] LIANG G,LIAO X,DU G,et al.Elevated glutathione production by adding precursor amino acids coupled with ATP in high cell density cultivation of Candida utilis[J].Journal of Applied Microbiology,2008,105(5):1 432-1 440.
[14] WANG Y,WANG D,WEI G,et al.Improved co-production of S-adenosylmethionine and glutathione using citrate as an auxiliary energy substrate[J].Bioresource Technology,2013,131:28-32.
[15] CHEN H,CHU J,ZHANG S,et al.Intracellular expression of Vitreoscilla hemoglobin improves S-adenosylmethionine production in a recombinant Pichia pastoris[J].Applied Microbiology & Biotechnology,2007,74(6):1 205-1 212.
[16] RAVI KANT,BALAMURALI M,MEENAKSHISUNDARA M S.Enhancing precursors availability in Pichia pastoris for the overproduction of S-adenosyl-L-methionine employing molecular strategies with process tuning[J].Journal of Biotechnology,2014,188:112-121.
[17] WEN S H.Optimization of the amino acid composition in glutathione fermentation[J].Process Biochemistry,2005.40(11):3 474-3 479.
[18] REN Y,LIU Q,LIU H,et al.Engineering substrate and energy metabolism for living cell production of cytidine-5′-diphosphocholine[J].Biotechnology and Bioengineering,2020,117(5):1 426-1 435.
[19] WU A L,MOYEROWLEY W S.GSH1,which encodes gamma-glutamylcysteine synthetase,is a target gene for yAP-1 transcriptional regulation[J].Molecular and Cellular Biology,1994,14(9):5 832-5 839.
[20] WANG Z,TAN T W,SONG J.Effect of amino acids addition and feedback control strategies on the high-cell-density cultivation of Saccharomyces cerevisiae for glutathione production[J].Process Biochemistry,2007,42(1):108-111.
[21] YANG Z,ZHANG Z.Production of (2R,3R)-2,3-butanediol using engineered Pichia pastoris :Strain construction,characterization and fermentation[J].Biotechnology for Biofuels,2018,11(1):35.
[22] YANG Z,ZHANG Z.Engineering strategies for enhanced production of protein and bio-products in Pichia pastoris:A review[J].Biotechnology Advances,2018,36(1):182-195
[23] SUN X W,LIU H,WANG P,et al.Construction of a novel MK-4 biosynthetic pathway in Pichia pastoris through heterologous expression of HsUBIAD1[J].Microbial Cell Factories,2019,18(1):169.
[1] 赵雨, 郭建华, 张春枝. 蜡状芽孢杆菌ZY12产磷脂酶D的影响因素[J]. 食品与发酵工业, 2021, 47(9): 57-62.
[2] 王迪, 王智荣, 陈湑慧, 宋军, 孔祥兵, 陈本开, 阚建全. 不同后发酵温度下曲霉型豆豉的氨基酸态氮生成动力学及品质变化研究[J]. 食品与发酵工业, 2021, 47(9): 91-99.
[3] 刘梦, 缪礼鸿, 刘蒲临, 王霜, 高瑞杰. 马克斯克鲁维酵母与酿酒酵母混合发酵对液态法黄酒风味的影响[J]. 食品与发酵工业, 2021, 47(9): 160-167.
[4] 王伟佳, 刘爱国, 廖振宇, 刘立增, 孙丽婷, 杨红, 刘蕊, 刘长旭, 李雨轩. 发酵乳中内源性苯甲酸产生的影响因素[J]. 食品与发酵工业, 2021, 47(9): 168-173.
[5] 黄力, 刘功良, 费永涛, 高苏娟, 白卫东, 刘锐. 微生物航天育种及其在发酵食品微生物中的应用研究概述[J]. 食品与发酵工业, 2021, 47(9): 321-327.
[6] 鲁朝凤, 黄佳琦, 黄勇桦, 杨士花, 陈壁, 杨明静, 李永强. 青稞膳食纤维和多酚对肠道微生物的协同调节作用[J]. 食品与发酵工业, 2021, 47(8): 6-13.
[7] 赵帅东, 刘婷, 季旭, 杨梓璐, 尹轩威, 施文正, 汪立平, 宁喜斌. 利用外源蛋白酶和曲霉菌YL001加速沙丁鱼鱼露的发酵[J]. 食品与发酵工业, 2021, 47(8): 14-20.
[8] 唐富豪, 滕建文, 韦保耀, 黄丽, 夏宁, 覃超. 基于非靶向代谢组学评价传统发酵对客家酸芥菜酚类化合物组成的影响[J]. 食品与发酵工业, 2021, 47(8): 128-133.
[9] 李丽, 杨云丽, 杨小凡, 何伟, 袁恺, 朱威宇, 彭超, 何一凡, 董银卯, 周卫强. 液体发酵生产灵芝三萜酸的过程调控研究进展[J]. 食品与发酵工业, 2021, 47(8): 304-312.
[10] 刘景阳, 刘云鹏, 徐庆阳. 谷氨酸全营养流加发酵新工艺[J]. 食品与发酵工业, 2021, 47(7): 14-20.
[11] 邓祥宜, 李继伟, 何立超, 张原源, 黄国威, 鲍晓龙, 邱朝坤. 宣恩火腿发酵过程中表面微生物群落演替规律[J]. 食品与发酵工业, 2021, 47(7): 34-42.
[12] 韩宛芸, 张长懿, 顾泽鹏, 段小雨, 孙庆杰, 邱立忠, 卞希良, 邬应龙, 刘韫滔. 高产β-葡聚糖的黄伞菌株分离、鉴定及其体外模拟消化[J]. 食品与发酵工业, 2021, 47(7): 51-57.
[13] 金刚, 张雪, 谷晓博, 王辉, 白雪菲, 张众, 盖昱梓, 马雯. 贺兰山东麓不同子产区赤霞珠葡萄自然发酵对葡萄酒香气的影响[J]. 食品与发酵工业, 2021, 47(7): 153-160.
[14] 梁鑫, 陈思雨, 赵育, 雷钰, 孔倩倩, 万欣, 张宝善. 乳酸菌和酵母菌发酵红枣汁工艺优化及成分分析[J]. 食品与发酵工业, 2021, 47(7): 175-182.
[15] 王路, 张蕾, 郑皎碧, 王琼熠, 范辉. 发酵制品调控糖脂代谢性疾病作用机制的研究进展[J]. 食品与发酵工业, 2021, 47(7): 292-300.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn