Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (9): 154-159    DOI: 10.13995/j.cnki.11-1802/ts.025692
  生产与科研应用 本期目录 | 过刊浏览 | 高级检索 |
屎肠球菌与植物乳杆菌共培养产γ-氨基丁酸条件优化及关键酶活性研究
张恕铭1, 曾林2, 孙向阳1, 汪杰1, 孙擎1, 张庆1*, 谭霄3
1(西华大学 食品与生物工程学院,四川省食品生物技术重点实验室,四川 成都,610039)
2(四川国检检测有限责任公司,四川 泸州,646000)
3(中国科学院大学 中国科学院成都生物研究所,四川 成都,610041)
Optimization of γ-aminobutyric acid produced by co-culturing Enterococcus faecium and Lactobacillus plantarum and the activities of key enzyme
ZHANG Shuming1, ZENG Lin2, SUN Xiangyang1, WANG Jie1, SUN Qing1, ZHANG Qing1*, TAN Xiao3
1(Provincial Key Laboratory of Food Biotechnology of Sichuan,College of Food and Bioengineering, Xihua University,Chengdu 610039,China)
2(Sichuan National Inspection and Testing Co.Ltd.,Luzhou 646000,China)
3(Chengdu Institute of Biology,Chinese Academy of Science,Chengdu 610041,China)
下载:  HTML  PDF (2917KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为进一步提高γ-氨基丁酸(γ-aminobutyric acid,GABA)产量,以从泡菜中筛选获得的产GABA屎肠球菌(Enterococcus faecium)AB157与植物乳杆菌(Lactobacillus plantarum)BC112为研究对象,采用高效液相色谱法对菌株共培养发酵产GABA表达能力进行评估。通过单因素试验和响应面优化共培养条件,并在最优条件下对共培养体系和单菌发酵进行谷氨酸脱羧酶酶活力分析。结果表明,当L-谷氨酸钠质量浓度为12.7 g/L、屎肠球菌AB157与植物乳杆菌BC112接种体积比例为5∶3、发酵时间85 h时,共培养产GABA能力最强,达6.35 g/L,较屎肠球菌AB157单菌株发酵产GABA(1.60 g/L)提高3.9倍。在此条件下分析谷氨酸脱羧酶活力,在发酵过程中,菌株共培养体系中谷氨酸脱羧酶活力明显高于单一屎肠球菌AB157发酵酶活力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张恕铭
曾林
孙向阳
汪杰
孙擎
张庆
谭霄
关键词:  屎肠球菌  γ-氨基丁酸  植物乳杆菌  共培养  谷氨酸脱羧酶    
Abstract: In order to further improve production of γ-aminobutyric acid (GABA),the GABA-producing strains of Enterococcus faecium AB157 and Lactobacillus plantarum BC112 selected from Paocai (Chinese pickle) were analyzed.And the GABA expression of co-culture fermentation broth was evaluated by high performance liquid chromatography (HPLC).Response surface methodology was used to optimize the co-culture conditions.The activity of key glutamate decarboxylase in the co-culture system was also analyzed.The results showed that the optimal co-culture fermentation conditions were 12.7 g/L of L-glutamate sodium,5∶3 inoculation volume ratio of E.faecium AB157 to L.plantarum BC112 and 85 h.Also,a yield of 6.35 g/L GABA which was 3.9 times (1.60 g/L) higher than that of single fermentation with E.faecium AB157 was achieved in the co-culture.Meanwhile,in the co-culture system,the activity of glutamate decarboxylase was significantly higher than the enzyme activity of E.faecium AB157 single strain.
Key words:  Enterococcus faecium    γ-aminobutyric acid    Lactobacillus plantarum    co-culture    glutamate decarboxylase
收稿日期:  2020-09-17      修回日期:  2020-11-02           出版日期:  2021-05-15      发布日期:  2021-06-03      期的出版日期:  2021-05-15
基金资助: 四川省科技计划项目(2019ZYZF0170);四川省教育厅重点项目(18ZA0447)
作者简介:  硕士研究生(张庆副教授为通讯作者,E-mail:biozhangq@163.com)
引用本文:    
张恕铭,曾林,孙向阳,等. 屎肠球菌与植物乳杆菌共培养产γ-氨基丁酸条件优化及关键酶活性研究[J]. 食品与发酵工业, 2021, 47(9): 154-159.
ZHANG Shuming,ZENG Lin,SUN Xiangyang,et al. Optimization of γ-aminobutyric acid produced by co-culturing Enterococcus faecium and Lactobacillus plantarum and the activities of key enzyme[J]. Food and Fermentation Industries, 2021, 47(9): 154-159.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.025692  或          http://sf1970.cnif.cn/CN/Y2021/V47/I9/154
[1] DIANA M,QUILEZ J,RAFECAS M.Gamma-aminobutyric acid as a bioactive compound in foods:A review[J].Journal of Functional Foods,2014,10(3):407-420.
[2] WALLS A B,WAAGEPETERSEN H S,BAK L K,et al.The glutamine-glutamate/GABA cycle:Function,regional differences in glutamate and GABA production and effects of interference with GABA metabolism[J].Neurochemical Research,2015,40(2):402-409.
[3] 曾林,刘波,许小艳,等.四川泡菜中产γ-氨基丁酸微生物的系统发育与表达能力评估[J].食品科学,2017,38(2):87-91.
ZENG L,LIU B,XU X Y,et al.Phylogeny and performance assessment of γ-aminobutyric acid-producing microorganisms from Sichuan pickles[J].Food Science,2017,38(2):87-91.
[4] SANCHART C,RATTANAPORN O,HALTRICH D,et al.Technological and safety properties of newly isolated GABA-producing Lactobacillus futsaii strains[J].Journal of Applied Microbiology,2016,121(3):734-745.
[5] VO T D L,KIM T W,HONG S H.Effects of glutamate decarboxylase and gamma-aminobutyric acid (GABA) transporter on the bioconversion of GABA in engineered Escherichia coli[J].Bioprocess and Biosystems Engineering,2012,35(4):645-648.
[6] BHANWAR S,BAMNIAA M,GHOSH M,et al.Use of Lactococcus lactis to enrich sourdough bread with γ-aminobutyric acid[J].International Journal of Food Sciences and Nutrition,2013,64(1):77-81.
[7] CHO Y R,CHANG J Y,CHANG H C.Production of gamma-aminobutyric acid (GABA) by Lactobacillus buchneri isolated from kimchi and its neuroprotective effect on neuronal cells[J].Journal of Microbiology and Biotechnology,2007,17(1):104-109.
[8] 曾林,谭霄,张庆,等.四川泡菜中产γ-氨基丁酸植物乳杆菌BC114发酵条件优化[J].食品与发酵工业,2017,43(3):116-122.
ZENG L,TAN X,ZHANG Q,et al.Optimization of γ-aminobutyric acid production by Lactobacillus plantarum BC114 from Sichuan pickle[J].Food and Fermentation Industries,2017,43(3):116-122.
[9] KHWANCHAI P,CHINPRAHAST N,PICHYANGKURA R,et al.Gamma-aminobutyric acid and glutamic acid contents,and the GAD activity in germinated brown rice:Effect of rice cultivars[J].Food Science and Biotechnology,2014,23(2):373-379.
[10] YAN P M,XUE0 W T,TAN S S,et al.Effect of inoculating lactic acid bacteria starter cultures on the nitrite concentration of fermenting Chinese paocai[J].Food Control,2008,19(1):50-55.
[11] KWON S Y,GARCIA C V,SONG Y C,et al.GABA-enriched water dropwort produced by co-fermentation with Leuconostoc mesenteroides SM and Lactobacillus plantarum K154[J].LWT-Food Science and Technology,2016,73(1):233-238.
[12] LEE E J,LEE S P.Novel bioconversion of sodium glutamate to γ-amino butyric acid by co-culture of Lactobacillus plantarum K154 in Ceriporia lacerata culture broth[J].Food Science and Biotechnology,2014,23(6):1 997-2 005.
[13] ZHANG Q,SUN Q,TAN X,et al.Characterization of gamma-aminobutyric acid (GABA)-producing Saccharomyces cerevisiae and coculture with Lactobacillus plantarum for mulberry beverage brewing[J].Journal of Bioscience and Bioengineering,2019,129(4):447-453.
[14] 谭霄,孙擎,曾林,等.一株产γ-氨基丁酸植物乳杆菌谷氨酸脱羧酶基因的克隆和表达[J].食品科学,2018,39(18):159-165.
TAN X,SUN Q,ZENG L,et al.Cloning and expressing of glutamate decarboxylase gene from Lactobacillus plantarum producing γ-aminobutyric acid[J].Food Science,2018,39(18):159-165.
[15] 郑鸿雁,赵炜彤,昌妍希.响应面法优化假丝酵母Y6产γ-氨基丁酸发酵工艺[J].食品科学,2015,36(9):130-135.
ZHENG H Y,ZHAO W T,CHANG Y X.Optimization of medium components and culture conditions for enhanced yield of γ-aminobutyric acid by Candida sp.Y6 by response surface methodology[J].Food Science,2015,36(9):159-165.
[16] 赵伟睿.微生物细胞催化合成γ-氨基丁酸效能强化的研究[D].杭州:浙江大学,2015.
ZHAO W R.Improvement of γ-aminobutyric acid biosynthesis ability of microbial cells[D].Hangzhou:Zhejiang University,2015.
[17] 段小果,李博,贺银凤,等.乳酸菌与酵母菌共生机理的研究进展[J].微生物学通报,2017,44(8):1 988-1 995.
Duan X G,LI B,HE Y F,et al.Progress in symbiotic mechanism between lactic acid bacteria and yeast[J].Microbiology China,2017,44(8):1 988-1 995.
[18] 蔡针华,程娜,贾震虎,等.群体感应信号分子AI-2高产乳酸菌株筛选及特性研究[J].食品与发酵工业,2018,44(1):66-71.
CAI Z H,CHENG N,JIA Z H,et al.Screening and characterization research of quorum sensing signaling molecule AI-2 high-yield Lactobacillus strains[J].Food and Fermentation Industries,2018,44(1):66-71.
[19] 张腾,贺银凤.基于LuxS的群体感应系统在乳酸菌共培养中的研究[J].食品与发酵工业,2012,38(8):119-124.
ZHANG T,HE Y F.Resent progresses on LuxS-mediated quorum sensing system in co-culture among lactic acid bacteria[J].Food and Fermentation Industries,2012,38(8):119-124.
[20] 满丽莉,孟祥晨,王辉,等.群体感应系统在乳酸菌产细菌素中的应用[J].食品科学,2011,32(13):360-364.
MAN L L,MENG X C,WANG C,et al.Regulation of bacteriocin synthesis by quorum sensing in lactic acid bacteria:A Review[J].Food Science,2011,32(13):360-364.
[21] SAHOO T K,JAVARAMAN G.Co-culture of Lactobacillus delbrueckii and engineered Lactococcislactis enhances stoichiomeyric yield of dlactic acid from whey permeate[J].Biotechnological Products and Progress Engineering,2019,20(5):5 653-5 662.
[1] 马申嫣, 王晶, 赵岩, 曹江, 翟齐啸, 张灏, 赵建新, 田丰伟, 陈卫. 以巧克力为载体的益生菌膳食补充剂的开发[J]. 食品与发酵工业, 2021, 47(9): 143-148.
[2] 杨胜远, 林谦, 刘淑敏, 苏巧云, 黄慧玲. 屎肠球菌源谷氨酸脱羧酶的制备及其酶学性质研究[J]. 食品与发酵工业, 2021, 47(5): 28-34.
[3] 易鑫, 周琦, 欧阳祝, 谈安群, 范佳莹, 李则灵, 朱霞建, 黄林华, 李贵杰, 王华. 乳酸菌富硒优化及其活性评价[J]. 食品与发酵工业, 2020, 46(8): 179-186.
[4] 胡畔, 杨萍, 郭天时. 植物乳杆菌与米根霉混合固态发酵改善玉米粉理化加工特性[J]. 食品与发酵工业, 2020, 46(7): 161-166.
[5] 王玉林, 黄洁, 崔树茂, 唐鑫, 毛丙永, 赵建新, 张灏, 陈卫. 植物乳杆菌最适生长底物解析及高密度培养工艺[J]. 食品与发酵工业, 2020, 46(4): 19-27.
[6] 刘江, 程群, 王振兴, 孙健, 何雪梅, 刘大群, 周贵七, 熊智, 张雪春. 云南乳饼中乳酸菌的筛选及其功能活性[J]. 食品与发酵工业, 2020, 46(4): 160-166.
[7] 杨慧, 步雨珊, 刘奥, 刘同杰, 张兰威, 易华西. 产细菌素植物乳杆菌Q7对酸奶后酸化及品质的影响[J]. 食品与发酵工业, 2020, 46(3): 30-35.
[8] 李冬龙, 李拂晓, 葛艳静, 谢彩锋, 刘继栋, 杭方学. 二次回归正交旋转组合设计优化富含γ-氨基丁酸豆酱制曲工艺[J]. 食品与发酵工业, 2020, 46(24): 159-166.
[9] 宁亚维, 马梦戈, 杨正, 侯琳琳, 赵忠情, 陈艺, 王志新, 贾英民. γ-氨基丁酸的制备方法及其功能食品研究进展[J]. 食品与发酵工业, 2020, 46(23): 238-247.
[10] 汪雨晨, 陶阳, 李丹丹, 韩永斌, 姜小三, 姜应兵. 低频低强度超声波辅助植物乳杆菌发酵白果汁的代谢特性研究[J]. 食品与发酵工业, 2020, 46(22): 55-63.
[11] 黄玉龙, 孙若诗, 全婷, 刘燕, 慕钰文, 康三江, 张辉元. 利用菊糖生产L-乳酸的菌株筛选鉴定和发酵工艺优化[J]. 食品与发酵工业, 2020, 46(22): 161-166.
[12] 谭凤玲, 王宝石, 胡培霞, 刘成功, 张明霞. 非酿酒酵母在葡萄酒混菌发酵中的应用及其挑战[J]. 食品与发酵工业, 2020, 46(22): 282-286.
[13] 陈韫慧, 方思璇, 陈佳琪, 郭振新, 胡宇超, 艾连中, 王光强. 不同益生元对植物乳杆菌生长的影响[J]. 食品与发酵工业, 2020, 46(21): 28-33.
[14] 朱浩, 管军军, 刘雪, 郑建樟, 冀旭阳, 路新开. 植物乳杆菌在体外消化中对大豆蛋白-磷脂复合乳液的影响[J]. 食品与发酵工业, 2020, 46(20): 27-32.
[15] 王春幸, OHYOUNGJOO, 甘奕, KIMTAESUK, 李洪军, IKHYUNYEO, 贺稚非. 植物乳杆菌PMO的安全性分析[J]. 食品与发酵工业, 2020, 46(19): 28-34.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn