Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (13): 310-317    DOI: 10.13995/j.cnki.11-1802/ts.025945
  综述与专题评论 本期目录 | 过刊浏览 | 高级检索 |
金黄色葡萄球菌抗生素耐药研究进展
蓝素桂, 李治蓉, 苏爱秋, 彭燕鸿, 廖燕科, 刘雪梅, 谭强*
(广西中医药大学 药学院,广西 南宁,530200)
Review on the antibiotic resistance in Staphylococcus aureus
LAN Sugui, LI Zhirong, SU Aiqiu, PENG Yanhong, LIAO Yanke, LIU Xuemei, TAN Qiang*
(Institute of Pharmacy,Guangxi University of Chinese Medicine,Nanning 530200,China)
下载:  HTML  PDF (9716KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 临床耐药菌株的出现和感染已成为全球关注的公共卫生健康问题。金黄色葡萄球菌是医院内和社区感染的重要病原菌之一,其抗生素耐药性问题日益严峻,严重威胁人类健康。文章主要对金黄色葡萄球菌的抗生素耐药机制、产生耐药原因及对策等方面进行综述,以期为抗菌药物的规范使用和减少抗生素耐药的新药研究提供理论指导,同时也为应对抗生素耐药性策略的制定提出新的思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蓝素桂
李治蓉
苏爱秋
彭燕鸿
廖燕科
刘雪梅
谭强
关键词:  金黄色葡萄球菌  耐药机制  抗生素  耐药性    
Abstract: In recent years,the emergence and infection of clinically resistant strains have become a global public health concern.Staphylococcus aureus is one of the important pathogens of nosocomial and community infections.In this paper,the mechanisms,reasons and countermeasures of antibiotic resistancein S.aureus are reviewed,in order to provide the theoretical guidance for the standardized use of antibacterial agents and the research on new drugs against the antibiotic resistance.Meanwhile,some new ideas are put forward for the coping strategies of antibiotic resistance.
Key words:  Staphylococcus aureus    resistance mechanisms    antibiotics    drug resistance
收稿日期:  2020-10-20      修回日期:  2020-12-03           出版日期:  2021-07-15      发布日期:  2021-08-02      期的出版日期:  2021-07-15
基金资助: 广西壮族自治区自然基金项目(2014GXNSFAA118176)
作者简介:  硕士研究生(谭强教授为通讯作者,E-mail: tan20111102@163.com.)
引用本文:    
蓝素桂,李治蓉,苏爱秋,等. 金黄色葡萄球菌抗生素耐药研究进展[J]. 食品与发酵工业, 2021, 47(13): 310-317.
LAN Sugui,LI Zhirong,SU Aiqiu,et al. Review on the antibiotic resistance in Staphylococcus aureus[J]. Food and Fermentation Industries, 2021, 47(13): 310-317.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.025945  或          http://sf1970.cnif.cn/CN/Y2021/V47/I13/310
[1] TURNER N A,ShARMA-KUINKEL B K,MASKARINEC S A,et al.Methicillin-resistant Staphylococcus aureus:An overview of basic and clinical research[J].Natrev Microbiol,2019,17(4):203-218.
[2] JANG S.Multidrug efflux pumps in Staphylococcus aureus and their clinical implications[J].J Microbiol,2016,54(1):1-8.
[3] SZAFRAN′SKA AK,JUNKER V,STEGLICH M,et al.Rapid cell division of Staphylococcus aureus during colonization of the human nose[J].Bmc Genomics,2019,20(229):1-13.
[4] PEACOCK SJ,PATERSON GK.Mechanisms of methicillin resistance in Staphylococcus aureus[J].Annu Rev Biochem,2015,84:577-601.
[5] LEPTIHN S.Welcome back to the Pre-Penicillin Era.Why we desperately need new strategies in the battle against bacterial pathogens[N].Infectious Microbes & Diseases,2020-01-03.
[6] NAZIR A.A review:Use of plant extracts and their phytochemical constituents to control antibiotic resistance in S.aureus[J].Pure and Applied Biology,2020,9(1):720-727.
[7] DIEKEMA DJ,PFALLER MA,SHORTRIDGE D,et al.Twenty-year trends in antimicrobial susceptibilities among Staphylococcus aureus from the SENTRY antimicrobial surveillance program[J].Open Forum Infect Di,2019,6(S-1):47-53.
[8] PASUPATHI M,SANTHI N.Synthesis characterization and antimicrobial activity of ethyl-4-(2,4-dichlorophenyl)-1,2,3,4-tetrahydro-6-methyl-2-thioxopyrimidine-5-carboxylate[J].World Scient ific News,2019,117:212-220.
[9] DALMAN M,BHATTA S,NAGAJOTHI N,et al.Characterizing the molecular epidemiology of Staphylococcus aureus across and within fitness facility types[J].Bmc Infect Dis,2019,19:69.
[10] DANTES R,MU Y,BELFLOWER R,et al.National burden of invasive methicillin-resistant Staphylococcus aureus infections,United States,2011[J].Jama Intern Med,2013,173(21):1 970-1 978.
[11] TRAN TT,MUNITA JM,ARIAS CA.Mechanisms of drug resistance:daptomycin resistance[J].Ann Ny Acad Sci,2015,1 354:32-53.
[12] LOWY FD.Antimicrobial resistance:the example of Staphylococcus aureus[J].J Clin Invest,2003,111(9):1 265-1 273.
[13] ALBUQUERQUE VC DE,FLORES VCJ,ZERON RMC,et al.Study of Vancomycin resistance among Staphylococcus aureus[J].International Multidisciplinary Journal,2019,3(6):31-37.
[14] DICKEY J,PERROT V.Adjunct phage treatment enhances the effectiveness of low antibiotic concentration against Staphylococcus aureus biofilms in vitro[J].Plos One,2019,14(1):1-17.
[15] REYNOSO E,FERREYRAERREYRA DD,DURANTINI EN,et al.Photodynamic inactivation to prevent and disrupt Staphylococcus aureus biofilm under different media conditions[J].Photodermatol Photo,2019,35(5):322-331.
[16] NAGARAJAN K,GATTU S,SELVAM D,et al.Efficacy of partial purified bacteriocin of Pseudomonas aeruginosa on Methicillin-resistant Staphylococcus aureus biofilm[J].Jddt,2019,9(4-A):438-441.
[17] KOT B,SYTYKIEWICZ H,SPRAWKA I,et al.Effect of trans-cinnamaldehyde on methicillin-resistant Staphylococcus aureus biofilm formation:Metabolic activity assessment and analysis of the biofilm-associated genes expression[J].Int J Mol Sci,2019,21(1):102-113.
[18] HARRIOTT MM,NOVERR MC.Importance of Candida-bacterial polymicrobial biofilms in disease[J].Trends Microbiol,2011,19(11):557-563.
[19] 陈小楠,申元娜,李彭宇,等.细菌生物膜的特征及抗细菌生物膜策略[J].药学学报,2018,53(12):2 040-2 049.CHEN XN,SHEN YN,LI PY,et al.Characteristics of bacterial biofilm and strategies to fight bacterial biofilm[J].Acta Pharmaceutica Sinica,2018,53(12):2 040-2 049.
[20] ROSE-MARTEL M,KULSHRESHTHA G,AHFEROM BERHANE N,et al.Histones from avian erythrocytes exhibit antibiofilm activity against methicillin-sensitive and methicillin-resistant Staphylococcus aureus[J].Sci Rep-uk,2017,7:45 980-45 990.
[21] AHMAD I,NAWAZ N,DERMANI F K,et al.Bacterial multidrug efflux proteins:A major mechanism of antimicrobial resistance[J].Curr Drug Targets,2018,20:16-28.
[22] 李晶,付喜爱,刘耀川,等.细菌四环素类药物外排泵的研究新进展[J].黑龙江畜牧兽医,2014(12):48-50.LI J,FU X A,LIU Y C,et al.New research advances in tetracycline drug efflux pump in bacteria[J].Heilongjiang Animal Science and Veterinary Medicine,2014(12):48-50.
[23] MARTINI CL,LANGE CC,BRITO MA,et al.Characterisation of penicillin and tetracycline resistance in Staphylococcus aureus isolated from bovine milk samples in Minas Gerais,Brazil[J].J Dairy Res,2017,84(2):202-205.
[24] GROSSMAN TH.Tetracycline antibiotics and resistance[J].Csh Perspect Med,2016,6(4):1-25.
[25] KHOSRAVI AD,JENABI A,MONTAZERI EA.Distribution of genes encoding resistance to aminoglycoside modifying enzymes in methicillin-resistant Staphylococcus aureus (MRSA) strains[J].Kjms,2017,33(12):587-593.
[26] 陈代杰,李燕.细菌对氨基糖苷类抗生素的耐药性与抗生素产生菌的推理选育[J].中国医药工业杂志,2001,32(2):37-41.CHEN DJ,LI Y.Aminoglycoglycoside-resistant bacteria and rational selection for antibiotic-producing strain[J].Chinese Journal of Pharmaceuticals,2001,32(2):37-41.
[27] 顾觉奋,杨晓兵.细菌对氨基糖苷类抗生素耐药机制研究进展[J].药物生物技术,2001,8(3):174-177.GU FJ,YANG XB.Progress in the study of mechanisms of bacteria resistance to aminoglycoside antibiotics[J].Pharmaceutical Biotechnology,2001,8(3):174-177.
[28] ROYCHOUDHURY S,DOTZLAF JE,GHAG S,et al.Purification,properties,and kinetics of enzymatic acylation with β-lactams of soluble penicillin-binding protein 2a:A major factor in methicillin-resistant Staphylococcus aureus[J].J Biol Chem,1994,269(16):12 067-12 073.
[29] HARTMAN BJ.Low-affinity penicillin-binding protein associated with β-lactam resistance in Staphylococcus aureus[J].J Bacteriol,1984,158(2):513-516.
[30] SCHITO GC.The importance of the development of antibiotic resistance in Staphylococcus aureus[J].Clin Microbiol Infect,2006,12(1):3-8.
[31] LERMINIAUX NA,CAMERON ADS.Horizontal transfer of antibiotic resistance genes in clinical environments[J].Can J Microbiol,2019,65(1):34-44.
[32] VICKERS AA,CHOPRA I,ONEILL AJ,et al.Intrinsic novobiocin resistance in staphylococcus saprophyticus[J].Antimicrob Agents Chemother,2007,51(12):4 484-4 485.
[33] KRAEMER SA,RAMACHANDRAN A,PERRON GG.Antibiotic pollution in the environment:from microbial ecology to public policy[J].Microorganisms,2019,7(6):180-203.
[34] ZANGO UU,IBRAHIM M,SHAWAI SAA,et al.A review on β-lactam antibiotic drug resistance[J].Moj Drug Des Develop Ther,2019,3(2):52-58.
[35] WALSH C.Where will new antibiotics come from?[J].Nat Rev Microbiol.2003,1(1):65-70.
[36] MARIMUTHU S,ANTONISAMY AJ,MALAYANDI S,et al.Antibiotics resistance-a stumbling block to antibiotics research[J].Ijrps,2019,10(3):2 008-2 013.
[37] RUSSELL AD.Biocide use and antibiotic resistance:The relevance of laboratory findings to clinical and environmental situations[J].The Lancet Infectious Diseases,2003,3(12):794-803.
[38] 吴东美, 陆若辰,陈钰泉,等.黄连、氯己定与抗生素介导的细菌交叉耐药[J].中国医院药学杂志,2017,37(13):1 250-1 255.WU D M,LU R C,CHEN Y Q,et al.Cross resistance mediated by antibiotics,chlorhexidine and Rhizoma coptidis in bacteria[J].Chinese Journal of Hospital Pharmacy,2017,37(13):1 250-1 255.
[39] 姚冬婷, 胡骏,张雪清,等.小檗碱对 5 种临床常见念珠菌体外抑菌作用分析[J].检验医学,2019,34(7):587-590.YAO D T,HU J,ZHANG X Q,et al.Inhibitory effect of berberine in vitro against clinical common Candida[J].Laboratory Medicine,2019,34(7):587-590.
[40] WU D,LU R,CHEN Y,et al.Study of cross-resistance mediated by antibiotics,chlorhexidine and Rhizoma coptidis in Staphylococcus aureus[J].J Globantimicrob Re,2016,7:61-66.
[1] 晏明兴, 陈芸, 吕廷保, 关鼎儒, 李杜慧, 何俊蓉, 梁微, 杨玲春, 胡永金, 朱仁俊. 云南边贸进口即食食品中金黄色葡萄球菌的分离与鉴定[J]. 食品与发酵工业, 2021, 47(6): 208-213.
[2] 王楠, 田晗, 张文晓, 白筱翠, 肖纯凌. 两株具有潜在益生作用的人源链球菌的安全性评价[J]. 食品与发酵工业, 2021, 47(5): 12-16.
[3] 郭峰, 董明辉, 高梦园, 舒方, 孙冬冬, 汪维云. 柠檬香蜂草精油的气相色谱-质谱联用分析及抑菌活性研究[J]. 食品与发酵工业, 2021, 47(2): 109-113.
[4] 徐文文, 梁玉林, 王云霞, 刘秀, 尹建军, 周广军, 宋全厚, 丁梦璇, 周鹏飞. 二重环介导等温扩增法快速检测乳粉中沙门氏菌和金黄色葡萄球菌[J]. 食品与发酵工业, 2021, 47(2): 241-246.
[5] 刘瑞娜, 孙思佳, 葛媛媛, 刘吉泉, 洪海军, 崔生辉, 刘艺茹, 翟磊, 林雅芳, 沈颖, 陈怡文, 刘骥, 李婷, 姚粟. ATP生物荧光增幅法在控制菌检测中的验证研究─应用于化妆品领域[J]. 食品与发酵工业, 2021, 47(11): 252-258.
[6] 吴任之, 胡欣洁, 韩国全, 易艳, 舒佳新, 曹阳, 余东梅, 赵俊梅, 张翼, 张雨薇. 食源性金黄色葡萄球菌快速检测方法的研究进展[J]. 食品与发酵工业, 2021, 47(10): 291-296.
[7] 杨彩玲, 赵雪珺, 李建颖, 赵国虎, 张丽, 曹文涛. 硅量子点荧光传感器快速检测鲜奶中的四环素[J]. 食品与发酵工业, 2020, 46(3): 264-268.
[8] 王春幸, OHYOUNGJOO, 甘奕, KIMTAESUK, 李洪军, IKHYUNYEO, 贺稚非. 植物乳杆菌PMO的安全性分析[J]. 食品与发酵工业, 2020, 46(19): 28-34.
[9] 马凯, 蔡芳叶, 黄永桥, 吴新文, 杨昌彪, 李占彬. 超高效液相色谱-串联质谱法检测蜂蜜中九种氨基糖苷类药物残留[J]. 食品与发酵工业, 2020, 46(18): 203-208.
[10] 赵芳, 赵建新, 张灏, 陈卫, 陆文伟. 长双歧杆菌抗生素初始微生物折点值制定及耐药机制探讨[J]. 食品与发酵工业, 2020, 46(13): 119-126.
[11] 易至, 丁洁琼, 王鸿超, 陆文伟, 赵建新, 陈卫, 张灏. 基于比较基因组学的丁酸梭菌遗传多样性及生物学特性[J]. 食品与发酵工业, 2020, 46(10): 1-7.
[12] 郭鹏利, 路云龙, 李想, 李丽华, 任孝茹, 陈利莉, 张敢为, 季艳伟. 基于纳米抗体的酶联免疫吸附法检测食品中金黄色葡萄球菌肠毒素B[J]. 食品与发酵工业, 2019, 45(20): 250-255.
[13] 李晓姝, 殷瑞敏, 毛丙永, 崔树茂, 赵建新. 副干酪乳杆菌的基因多样性及其抗生素耐受性分析[J]. 食品与发酵工业, 2019, 45(14): 1-8.
[14] 赵雪婷,彭珍,胡敏,黄涛,熊涛. 三株人源干酪乳杆菌的益生特性[J]. 食品与发酵工业, 2019, 45(12): 15-19.
[15] 刘欢, 谢婷, 何美珊, 丁楠, 钟青萍. 广州市售海产品中副溶血弧菌分离菌株的鉴定及其耐药性分析[J]. 食品与发酵工业, 2018, 44(11): 28-34.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn