Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (7): 130-136    DOI: 10.13995/j.cnki.11-1802/ts.025970
  生产与科研应用 本期目录 | 过刊浏览 | 高级检索 |
金花茶花浸提物与消化蛋白酶的相互作用
吴清孝1, 张海龙1, 秦小明1,2*, 谌素华1
1(广东海洋大学 食品科技学院,广东省水产品加工与安全重点实验室,广东 湛江,524008)
2(广东省亚热带果蔬加工现代农业科技创新中心,广东 湛江,524008)
Interaction properties between Camellia nitidissima Chi flower extract and digestive protease
WU Qingxiao1, ZHANG Hailong1, QIN Xiaoming1,2*, CHEN Suhua 1
1(College of Food Science and Technology,Guangdong Ocean University,Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety,Zhanjiang 524088,China)
2(Guangdong Provincial Modern Agricultural Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing,Zhanjiang 524088,China)
下载:  HTML   PDF (4673KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探讨金花茶花浸提物对消化蛋白酶活性的影响及其作用机理,首先研究了金花茶花浸提物对消化蛋白酶活性的影响以及抑制动力学,其次采用荧光光谱法、紫外光谱法和圆二色谱法研究浸提物抑制消化蛋白酶活性的机制。结果表明,醇提物和水提物对胃蛋白酶(IC50分别为3.194和3.330 g/L;竞争抑制常数分别为4.518和7.641 g/L)和胰蛋白酶(IC50分别为29.131和56.534 g/L;竞争抑制常数分别为74.571和175.832 g/L)有明显的抑制作用,且抑制类型为混合型抑制;金花茶花浸提物能降低胃蛋白酶(猝灭常数分别为1.522和1.205 L/g)和胰蛋白酶(猝灭常数分别为2.175和1.392 L/g)的内源荧光,改变消化蛋白酶的二级结构。因此,金花茶花浸提物可通过改变消化蛋白酶的结构抑制其活性,该研究为金花茶花功能性食品开发提供理论支撑。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴清孝
张海龙
秦小明
谌素华
关键词:  金花茶花浸提物  胃蛋白酶  胰蛋白酶  动力学  光谱    
Abstract: To investigate the effect of Camellia nitidissima Chi flower on protein digestion and absorption, the effect of C. nitidissima Chi flower extract on the digestive protease activity and the inhibition kinetics of digestive protease were studied using fluorescence spectroscopy, ultraviolet spectroscopy, and circular dichroism. The results showed that both ethanol extract and aqueous extract of C. nitidissima Chi flower exhibited obvious inhibitory effect on pepsin (IC50 were 3.194 and 3.330 g/L; competition inhibition constant was 4.518 and 7.641 g/L, respectively) and trypsin activity (IC50 were 29.131 and 56.534 g/L; competition inhibition constant were 74.571 and 175.832 g/L, respectively), and the inhibition types were mixed manner. The spectrum experiment demonstrated that C. nitidissima Chi flower extract reduced the endogenous fluorescence of pepsin (quenching constant were 1.522 and 1.205 L/g, respectively) and trypsin (Quenching constant were 2.175 and 1.392 L/g, respectively), and further changed the secondary structure of digestive protease. Therefore, this study proved that the C. nitidissima Chi flower extracts could inhibit digestive protease activity by changing its structure, which provides theoretical support for the development of functional foods containing C. nitidissima Chi flower.
Key words:  Camellia nitidissima Chi flower extract    pepsin    trypsin    kinetics    spectrum
收稿日期:  2020-10-22      修回日期:  2020-12-18           出版日期:  2021-04-15      发布日期:  2021-05-20      期的出版日期:  2021-04-15
作者简介:  硕士研究生(秦小明教授为通讯作者,E-mail:xiaoming0502@21cn.com)
引用本文:    
吴清孝,张海龙,秦小明,等. 金花茶花浸提物与消化蛋白酶的相互作用[J]. 食品与发酵工业, 2021, 47(7): 130-136.
WU Qingxiao,ZHANG Hailong,QIN Xiaoming,et al. Interaction properties between Camellia nitidissima Chi flower extract and digestive protease[J]. Food and Fermentation Industries, 2021, 47(7): 130-136.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.025970  或          http://sf1970.cnif.cn/CN/Y2021/V47/I7/130
[1] MOHAN V,UNNIKRISHNAN R,SHOBANA S,et al.Are excess carbohydrates the main link to diabetes & its complications in Asians?[J] Indian Journal of Medical Research,2018,148(5):531-538.
[2] 姜勇.我国成人超重肥胖流行现状、变化趋势及健康危害研究[D].北京:中国疾病预防控制中心,2013.JIANG Y.Study on prevalence,secular trends and health risk of overweight and obesity among Chinese adults[D].Beijing:Chinese Center For Disease Control And Prevention,2013.
[3] DÍAZ-RÙA R,KEIJER J,PALOU A,et al.Long-term intake of a high-protein diet increases liver triacylglycerol deposition pathways and hepatic signs of injury in rats[J].The Journal of Nutritional Biochemistry,2017,46:39-48.
[4] NAMIKOSHI T,TOMITA N,SATOH M,et al.High dietary protein intake induces endothelial dysfunction in uninephrectomized rats[J].Molecular Medicine Reports,2009,2(3):429-434.
[5] LIU C,HE W,CHEN S,et al.Interactions of digestive enzymes and milk proteins with tea catechins at gastric and intestinal pH[J].International Journal of Food Science & Technology,2017,52(1):247-257.
[6] WU X,WANG W,ZHU T,et al.Phenylpropanoid glycoside inhibition of pepsin,trypsin and α-chymotrypsin enzyme activity in Kudingcha leaves from Ligustrum purpurascens[J].Food Research International,2013,54(2):1 376-1 382.
[7] ZHANG H L,WU Q X,QIN X M.Camellia nitidissima Chi flower extracts inhibit α-amylase and α-glucosidase:In vitro by analysis of optimization of addition methods,inhibitory kinetics and mechanisms[J].Process Biochemistry,2019,86:177-185.
[8] ZHANG H L,WU Q X,WEI X,et al.Pancreatic lipase and cholesterol esterase inhibitory effect of Camellia nitidissima Chi flower extracts in vitro and in vivo[J].Food Bioscience,2020,37:100 682.
[9] ZENG H J,YANG R,LIANG H,et al.Molecular interactions of flavonoids to pepsin:Insights from spectroscopic and molecular docking studies[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2015,151:576-590.
[10] FENG Y,LV M,LU Y,et al.Characterization of binding interactions between selected phenylpropanoid glycosides and trypsin[J].Food Chemistry,2018,243:118-124.
[11] SON H U,YOON E K,YOO C Y,et al.Effects of synergistic inhibition on alpha-glucosidase by phytoalexins in soybeans[J].Biomolecules,2019,9(12):828.
[12] FANG Y,XU H,SHEN L,et al.Study on the mechanism of the interaction between acteoside and pepsin using spectroscopic techniques[J].Luminescence,2015,30(6):859-866.
[13] 周培羽,张灵敏,李灵犀,等.不同聚合度葡萄籽原花青素对三种消化酶抑制作用机制[J].沈阳药科大学学报,2019,36(5):436-445.ZHOU P Y,ZHANG L M,LI L X,et al.Study on the interaction between grape seed procyanidins with different degrees of polymerization and digestive enzymes[J].Journal of Shenyang Pharmaceutical University,2019,36(5):436-445.
[14] XIAO H Z,LIU B G,MO H Z,et al.Comparative evaluation of tannic acid inhibiting α-glucosidase and trypsin[J].Food Research International,2015,76(Pt 3):605-610.
[15] LAKOWICZ J R.Principles of fluorescence spectroscopy,third edition [M].Springer Science Business Media,2006.
[16] ZENG H J,YOU J,LIANG H L,et al.Investigation on the binding interaction between silybin and pepsin by spectral and molecular docking[J].International Journal of Biological Macromolecules,2014,67:105-111.
[17] REN G,SUN H,LI G,et al.Molecular docking and muiltple spectroscopy investigation on the binding characteristics of aloe-emodin to pepsin[J].Journal of Molecular Structure,2019,1 195:369-377.
[18] MIAO M,JIANG B,JIANG H,et al.Interaction mechanism between green tea extract and human α-amylase for reducing starch digestion[J].Food Chemistry,2015,186:20-25.
[19] 倪孟婷,樊美慧,胡兴,等.槲皮素与胰蛋白酶的作用机制及其抗氧化活性[J].南昌大学学报(理科版),2017,41(3):244-248;254.NI M T,FAN M H,HU X,et al.Interaction mechanism of quercetin with trypsin and the antioxidant activity of quercetin[J].Journal of Nanchang University (Natural Science),2017,41(3):244-248;254.
[20] 赵红辉. 类黄酮与胰蛋白酶相互作用特性的研究[D].广州:华南理工大学,2012.ZHAO H H.Research on the interaction between flavonoids and trypsin[D].Guangzhou:South China University of Technology,2012.
[21] WANG R,KANG X,WANG R,et al.Comparative study of the binding of trypsin to caffeine and theophylline by spectrofluorimetry[J].Journal of Luminescence,2013,138:258-266.
[22] REN G Y,SUN H,GUO J Y,et al.Molecular mechanism of the interaction between resveratrol and trypsin via spectroscopy and molecular docking[J].Food & Function,2019,10(6):3 291-3 302.
[23] 刘婵. 体外消化环境下多酚与蛋白、酶间的竞争相互作用及其对多酚和蛋白功能特性的影响研究[D].无锡:江南大学,2017.LIU C.Competitive interaction between polyphenols and proteins,enzymes in vitro digestion and its effect on functional properties of polyphenols and proteins[D].Wuxi:Jiangnan University,2017.
[1] 许建东, 张淑娟, 郑小南, 薛建新, 孙海霞. 高光谱技术结合变量选择方法的甘薯冻害检测研究[J]. 食品与发酵工业, 2021, 47(8): 197-203.
[2] 杨菊, 毛银, 黄晓强, 周胜虎, 邓禹. 计算设计改造Thermobifida fusca 5-羧基-2-戊烯酰-辅酶A还原酶促进己二酸生产[J]. 食品与发酵工业, 2021, 47(7): 1-7.
[3] 朱琳, 郭全友. 底物和环境因子对鱼源腐败希瓦氏菌和假单胞菌生长动力学的影响[J]. 食品与发酵工业, 2021, 47(7): 58-63.
[4] 李海枝, 王俊, 熊菲菲, 刘义凤, 王玺, 马芙俊, 段盛林, 周志桥, 潘聪, 于有强, 夏凯, 梁爱民. 不同钙制剂体外消化的稳定性比较及消化后的结构研究[J]. 食品与发酵工业, 2021, 47(7): 116-122.
[5] 杨晨昱, 袁鸿飞, 马惠玲, 任亚梅, 任小林. 基于傅里叶近红外光谱和电子鼻技术的苹果霉心病无损检测[J]. 食品与发酵工业, 2021, 47(7): 211-216.
[6] 余瞻, 赵福权, 徐成龙, 王珍珍, 张泽鑫, 沙如意, 毛建卫. 红茶菌中细菌纤维素产生菌的筛选、鉴定及其发酵动力学模型构建[J]. 食品与发酵工业, 2021, 47(6): 92-98.
[7] 姜洪喆, 蒋雪松, 杨一, 胡逸磊, 陈青, 施明宏, 周宏平. 肉类掺杂掺假的高光谱成像检测研究进展[J]. 食品与发酵工业, 2021, 47(6): 300-305.
[8] 邓维良, 柴纬明, 罗麟霜. 利巴韦林抗酪氨酸酶活性及其在贡梨中的保鲜应用[J]. 食品与发酵工业, 2021, 47(5): 162-167.
[9] 孙婷, 田建平, 胡新军, 罗惠波, 黄丹, 黄浩平. 基于高光谱成像技术的酿酒高粱品种分类[J]. 食品与发酵工业, 2021, 47(5): 186-192.
[10] 王小云, 脱聪聪, 黄志芸, 丁旭, 周瑫, 史金涵, 俞树良, 霍归国, 张继. 新鲜羌活挥发油的成分分析以及抗氧化和抑菌活性探究[J]. 食品与发酵工业, 2021, 47(5): 193-200.
[11] 江虹, 庞向东. 甲基绿吸收光谱法同时测定饮料中的酒石黄和日落黄[J]. 食品与发酵工业, 2021, 47(5): 238-243.
[12] 王少曼, 张彦军, 吴刚, 徐飞, 胡荣锁, 谭乐和. 菠萝蜜果酒分批发酵动力学模型研究[J]. 食品与发酵工业, 2021, 47(4): 74-79.
[13] 叶建秋, 黄丹平, 田建平, 黄丹, 罗惠波, 张力, 王鑫, 董娜. 基于深度自编码的大曲高光谱数据解混研究[J]. 食品与发酵工业, 2021, 47(4): 96-101.
[14] 张珮, 王银红, 李高阳, 单杨, 朱向荣. 基于近红外光谱的桃果实冷害识别分析[J]. 食品与发酵工业, 2021, 47(2): 254-259.
[15] 魏晋梅, 刘彩云, 方彦, 坚乃丹. 沙棘果油脂肪酸与微量元素测定[J]. 食品与发酵工业, 2021, 47(2): 268-273.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn