Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (14): 100-106    DOI: 10.13995/j.cnki.11-1802/ts.025980
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
藏东南产区葡萄和根际土壤细菌群落多样性
张二豪, 赵润东, 禄亚洲, 尹秀, 蔡皓, 罗章*
(西藏农牧学院 食品科学学院,西藏 林芝,860000)
Bacterial community diversity of grape and rhizosphere soil of grapevine plants grown in southeastern Tibet
ZHANG Erhao, ZHAO Rundong, LU Yazhou, YIN Xiu, CAI Hao, LUO Zhang*
(College of Food Science, Tibet Agriculture and Animal Husbandry University, Nyingchi 860000, China)
下载:  HTML  PDF (5556KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了分析藏东南产区葡萄及根际土壤细菌群落结构及多样性,采用高通量测序技术对西藏2个种源地葡萄和根际土壤细菌群落结构和多样性进行了系统分析。结果表明,2个种源地葡萄和土壤样品共获得366 720条有效序列,2 655个可操作分类单元(operational taxonomic units,OTUs),隶属32门、713属,不同样品间细菌群落存在一定的共性和差异且土壤细菌种类最多,多样性最高。不同样品中的优势菌门均为变形菌门(Proteobacteria)和放线菌门(Actinobacteria),其相对丰度分别为21.31%~69.08%和21.41%~44.60%;林芝葡萄(LP)中的优势属是伯克氏菌属(Burkholderia)(27.60%)和脆弱拟杆菌(Muribaculaceae)(5.34%),而芒康葡萄(MP)中的细菌以葡萄糖杆菌属(Gluconobacter)(22.53%)、冰冻小杆菌属(Frigoribacterium)(14.14%)和泛菌属(Pantoea)(13.52%)为主;林芝根际土壤(LS)中的优势属是节杆菌属(Arthrobacter)(11.49%)、肠杆菌科(Enterobacteriaceae)(7.43%)和类诺卡氏菌属(Nocardioides)(5.15%),而芒康根际土壤(MS)中的优势属是Gaiella(5.17%)和Llumatobacteraceae(4.43%),不同样品中优势菌群差异较大。主成分分析表明,2个种源地间葡萄样品中细菌群落组成相似,而土壤中细菌群落组成差异较大。该研究为西藏设施葡萄种植和酿酒细菌的筛选与利用提供了理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张二豪
赵润东
禄亚洲
尹秀
蔡皓
罗章
关键词:  葡萄  高通量测序  细菌  多样性  主坐标分析    
Abstract: To investigate the bacterial community and diversity of grapevine plants grown in southeastern Tibet, the bacterial community and diversity of grape and rhizosphere soil of different provenances in southeastern Tibet were analyzed by high-throughput sequencing. The results showed that a total of 366 720 valid sequences and 2 655 operational taxonomic units (OTUs) were obtained across all libraries, representing 713 genera in 32 bacterial phyla. There were similarities and differences in bacterial communities among different samples, and the rhizosphere soil showed the highest number and diversity of bacteria. The Proteobacteria and Actinobacteria were the predominant bacterial phyla in all samples, accounting for 21.31%-69.08% and 21.41%-44.60%, respectively. Burkholderia (27.60%) and norank_f_Muribaculaceae (5.34%) were the predominant genera in Linzhi grape, while Gluconobacter (22.53%), Frigoribacterium (14.14%) and Pantoea (13.52%) were the predominant genera in Mangkang grape. Arthrobacter (11.49%)、unclassified _Enterobacteriaceae (7.43%) and Nocardioides (5.15%) were the predominant genera in Linzhi soil, while Gaiella (5.17%) and norank_f_Llumatobacteraceae (4.43%) were the predominant genera in Mangkang soil. The predominant bacteria were significantly different in different samples. Principal coordinates analysis (PCoA) showed that the bacterial community in grape samples was similar, however, the bacterial community of rhizosphere soil was significantly different. The study provides a theoretical basis for grape planting and utilization of distinctive microorganisms in the wine industry.
Key words:  grape    high-throughput sequencing    bacteria    diversity    principal coordinate analysis
收稿日期:  2020-10-22      修回日期:  2020-12-25           出版日期:  2021-07-25      发布日期:  2021-08-20      期的出版日期:  2021-07-25
基金资助: 西藏农牧学院食品科学与工程重点学科建设(502218009)
作者简介:  硕士,实验师(罗章教授为通讯作者,E-mail:luozhang1759@xza.edu.cn)
引用本文:    
张二豪,赵润东,禄亚洲,等. 藏东南产区葡萄和根际土壤细菌群落多样性[J]. 食品与发酵工业, 2021, 47(14): 100-106.
ZHANG Erhao,ZHAO Rundong,LU Yazhou,et al. Bacterial community diversity of grape and rhizosphere soil of grapevine plants grown in southeastern Tibet[J]. Food and Fermentation Industries, 2021, 47(14): 100-106.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.025980  或          http://sf1970.cnif.cn/CN/Y2021/V47/I14/100
[1] 张世伟. 酿酒葡萄微生物群落多样性及其氮代谢通量研究[D].北京:中国矿业大学(北京), 2018.ZHANG S W.Study on microbial community diversity and the nitrogen metabolism flux of wine grapes[D].Beijing:China University of Mining & Technology (Beijing), 2018.
[2] ALEKLETT K, LEFF J W, FIERER N, et al.Wild plant species growing closely connected in a subalpine meadow host distinct root-associated bacterial communities[J].Peer J, 2015, 3(8):e804.
[3] CHAUDHRY V, REHMAN A, MISHRA A, et al.Changes in bacterial community structure of agricultural land due to long-term organic and chemical amendments[J].Microbial Ecology, 2012, 64(2):450-460.
[4] RENOUF V, CLAISSE O, LONVAUD-FUNEL A.Numeration, identification and understanding of microbial biofilm on grape berry surface[J].Australian Journal of Grape and Wine Research, 2005, 11:316-327.
[5] OCÓN E, GUTIÉRREZ A R, GARIJO P, et al.Presence of non-Saccharomyces yeasts in cellar equipment and grape juice during harvest time[J].Food Microbiology, 2010, 27(8):1 023-1 027.
[6] MARTINS G, LAUGA B, MIOT-SERTIER C, et al.Characterization of epiphytic bacterial communities from grapes, leaves, bark and soil of grapevine plants grown, and their relations[J].PLoS One, 2013, 8(8):e73 013.
[7] BOKULICH N A, THORNGATE J H, RICHARDSON P M, et al.Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate[J].Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(1):e139-e148.
[8] 魏玉洁, 邹弯, 马文瑞, 等.应用高通量测序技术研究新疆产区葡萄果实、叶片及果园土壤微生物多样性[J].食品科学, 2018, 39(6):162-170.WEI Y J, ZOU W, MA W R, et al.Microbial diversity of berries, leaves and soil of grapevine plants grown in Xinjiang analyzed by high-throughput sequencing[J].Food Science, 2018, 39(6):162-170.
[9] RIBÉREAU-GAYON P, DUBOURDIEU D, DONÈCHE B.Handbook of Enology:The Microbiology of Wine and Vinifications[M].New York:John Wiley and Sons, 2006:18-37.
[10] 王伟, 布丽根·加冷别克, 胡晓东, 等.基于高通量测序技术的酿酒葡萄产区土壤微生物多样性[J].新疆农业科学, 2020, 57(5):859-868.WANG W, BULIGEN J L B K, HU X D, et al.Analysis of the microbial community diversity of soil from wine grape producting area in Xinjiang based on high-throughput sequencing[J].Xinjiang Agricultural Sciences, 2020, 57(5):859-868.
[11] WU L Y, WEN C Q, QIN Y J, et al.Phasing amplicon sequencing on Illumina MiSeq for robust environmental microbial community analysis[J].BMC Microbiology, 2015, 15(1):125.
[12] YOU J, WU G, REN F P, et al.Microbial community dynamics in Baolige oilfield during MEOR treatment, revealed by Illumina MiSeq sequencing[J].Applied Microbiology & Biotechnology, 2016, 100(3):1 469-1 478.
[13] 鲍士旦. 土壤农化分析[M].第三版.北京:中国农业出版社, 2000.BAO S D.Soil and Agricultural Chemistry Analysis[M].3rd ed.Beijing:China Agricultural Press, 2000.
[14] GREGORY CAPORASO J, KUCZYNSKI J, STOMBAUGH J, et al.QIIME allows analysis of high-throughput community sequencing data[J].Nature Methods, 2010, 7(5):335-336.
[15] WAWRIK B, KERKHOF L, KUKOR J, et al.Effect of different carbon sources on community composition of bacterial enrichments from soil[J].Appl Environ Microbiol, 2005, 71(11):6 776-6 783.
[16] PHILIPPOT L, ANDERSSON S G E, BATTIN T J, et al.The ecological coherence of high bacterial taxonomic ranks[J].Nature Reviews Microbiology, 2010, 8(7):523-529.
[17] 杨敏, 殷绒, 张国涛, 等.基于高通量测序技术的香格里拉葡萄酒产区根际微生物多样性研究[J].云南农业大学学报(自然科学), 2020, 35(3):392-400.YANG M, YIN R, ZHANG G T, et al.Study on the grape rhizosphere microbial diversity in Shangri-La wine region by high-throughput sequencing technology[J].Journal of Yunnan Agricultural University (Natural Science), 2020, 35(3):392-400.
[18] FIERER N, BRADFORD M A, JACKSON R B.Toward an ecological classification of soil bacteria[J].Ecology, 2007, 88(6):1 354-1 364.
[19] HIRANO S S, UPPER C D.Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae-a pathogen, ice nucleus, and epiphyte[J].Microbiology and Molecular Biology Reviews, 2000, 64(3):624-653.
[20] PARK J Y, HAN S H, LEE J H, et al.Draft genome sequence of the biocontrol bacterium Pseudomonas putida B001, an oligotrophic bacterium that induces systemic resistance to plant diseases[J].Journal of Bacteriology, 2011, 193(23):6 795-6 796.
[21] 雒晓芳, 陈俊楠, 田丹妮, 等.白色类诺卡氏菌的分离鉴定及其抗菌活性初探[J].中国酿造, 2015, 34(10):58-61.LUO X F, CHEN J N, TIAN D N, et al.Separation and identification of Nocardioides albus and preliminary research on its antibacterial activity[J].China Brewing, 2015, 34(10):58-61.
[22] GONG A D, DONG F Y, HU M J, et al.Antifungal activity of volatile emitted from Enterobacter asburiae Vt-7 against Aspergillus flavus and aflatoxins in peanuts during storage[J].Food Control, 2019, 106:106 718.
[23] 姜怡, 杨颖, 陈华红, 等.植物内生菌资源[J].微生物学通报, 2005(6):146-147.JIANG Y, YANG Y, CHEN H H, et al.Plant endophyte resources[J].Microbiology China, 2005(6):146-147.
[24] MAICAS S.The use of alternative technologies to develop malolactic fermentation in wine[J].Applied Microbiology and Biotechnology, 2001, 56(1-2):35-39.
[25] CLAUDIO D, FORMICA J V.Wine Microbiology[M].Taylor and Francis, 2012-06-15.
[26] ZABAT M A,SANO W H,WURSTER J I, et al.Microbial community analysis of sauerkraut fermentation reveals a stable and rapidly established community[J].Foods, 2018, 7(5):77.
[27] RHEE S J, LEE J E, LEE C H.Importance of lactic acid bacteria in Asian fermented foods[J].Microbial Cell Factories, 2011, 10(S1):5.
[28] KIM M J, LEE H W, LEE M E, et al.Mixed starter of Lactococcus lactis and Leuconostoc citreum for extending kimchi shelf-life[J].Journal of Microbiology, 2019, 57(6):479-484.
[29] 周利国. 宁夏银川葡萄酒产区酒酒球菌分离筛选及鉴定[D].杨凌:西北农林科技大学, 2009.ZHOU L G.The isolation and identification of Oenococcus oeni from Ningxia Yinchuan wine production region[D].Yangling:Northwest A&F University, 2009.
[1] 蒋彤, 纪杭燕, 柏玉香. Lactobacillus reuteri 121 4,6-α-葡萄糖基转移酶GtfBdN改性薯类淀粉产物结构及理化特性研究[J]. 食品与发酵工业, 2021, 47(9): 42-48.
[2] 符群, 郐滨, 钟明旭, 吴小杰. 超声波辅助酶解法提取北虫草菌素及其降血糖活性研究[J]. 食品与发酵工业, 2021, 47(9): 120-127.
[3] 陈敦武, 刘翠翠, 陈雄, 代俊, 王志, 姚鹃, 李沛, 李欣. 不同食品酵母对葡萄糖的流加强度和热激压力的生理响应[J]. 食品与发酵工业, 2021, 47(8): 21-26.
[4] 邓祥宜, 李继伟, 何立超, 张原源, 黄国威, 鲍晓龙, 邱朝坤. 宣恩火腿发酵过程中表面微生物群落演替规律[J]. 食品与发酵工业, 2021, 47(7): 34-42.
[5] 金刚, 张雪, 谷晓博, 王辉, 白雪菲, 张众, 盖昱梓, 马雯. 贺兰山东麓不同子产区赤霞珠葡萄自然发酵对葡萄酒香气的影响[J]. 食品与发酵工业, 2021, 47(7): 153-160.
[6] 耿雪营, 郭藏, 米生权, 张艳贞, 郭俊霞, 陈文. 单宁的血糖调节活性功能研究进展[J]. 食品与发酵工业, 2021, 47(7): 301-306.
[7] 罗碧霞, 郑若欣, 程铁辕, 任志强, 卫春会, 邓杰, 黄治国. 浓香型白酒窖泥放线菌的原位分离及代谢特性研究[J]. 食品与发酵工业, 2021, 47(6): 75-83.
[8] 赵昊, 宋晶晶, 于佳俊, 张晓蒙, 张凤杰, 李涛, 武运, 薛洁. 不同产区葡萄酒多酚物质抗氧化活性差异及相关性分析[J]. 食品与发酵工业, 2021, 47(6): 84-91.
[9] 余瞻, 赵福权, 徐成龙, 王珍珍, 张泽鑫, 沙如意, 毛建卫. 红茶菌中细菌纤维素产生菌的筛选、鉴定及其发酵动力学模型构建[J]. 食品与发酵工业, 2021, 47(6): 92-98.
[10] 陶大炜, 宁喜斌. 产α-环糊精葡萄糖基转移酶的菌株筛选、鉴定与酶学性质的初步研究[J]. 食品与发酵工业, 2021, 47(6): 145-151.
[11] 晏明兴, 陈芸, 吕廷保, 关鼎儒, 李杜慧, 何俊蓉, 梁微, 杨玲春, 胡永金, 朱仁俊. 云南边贸进口即食食品中金黄色葡萄球菌的分离与鉴定[J]. 食品与发酵工业, 2021, 47(6): 208-213.
[12] 刘梦琦, 朱媛媛, 倪慧, 王玉荣, 郭壮. 荆州地区霉豆渣真菌多样性研究[J]. 食品与发酵工业, 2021, 47(6): 241-246.
[13] 王曼, 杨琛, 覃晓玉, 康孟杰, 郝桂芳, 王承明. 鲊肉粉中乳酸菌和葡萄球菌的筛选及鉴定[J]. 食品与发酵工业, 2021, 47(5): 22-27.
[14] 李娜, 崔梦君, 马佳佳, 雷炎, 郭壮, 张振东. 基于Illumina MiSeq测序和传统可培养方法的洪湖鲊广椒乳酸菌多样性研究[J]. 食品与发酵工业, 2021, 47(4): 110-115.
[15] 孙玉霞, 赵新节. 美极梅奇酵母的代谢特性及其在葡萄酒生产中的应用前景[J]. 食品与发酵工业, 2021, 47(4): 305-311.
[1] PENG Zhi-fu et all . Comparison of odor-active compounds in distillates of five grains between first time and second time distillation using AEDA[J]. Food and Fermentation Industries, 2017, 43(11): 1 -8 .
[2] YUAN Feng-jiao et al . Heterologous Expression of phenylpyruvate reductase from Lactobacillus plantarum and Its Application in the Preparation of Phenyllactic Acid[J]. Food and Fermentation Industries, 2017, 43(11): 16 -21 .
[3] WU Xiang-yi et al . Effect of yak milk casein hydrolysates on protein carbonyl content and activity of antioxidant enzymes of oxidative damaged HepG2 cells induced by H2O2[J]. Food and Fermentation Industries, 2017, 43(11): 34 -38 .
[4] BAN Jia et al . Use of molasses for DHA production by Schizochytrium sp.[J]. Food and Fermentation Industries, 2017, 43(11): 39 -43 .
[5] JIAO Cong-rui et al. Gene xynC from Aspergillus niger encoding a cold-active and acidophilic xylanase[J]. Food and Fermentation Industries, 2017, 43(11): 44 -50 .
[6] LIU Wen-ying et al. Protective effect of wheat oligopeptides and glutamine against gastrointestinal mucosa damage in rats[J]. Food and Fermentation Industries, 2017, 43(11): 51 -57 .
[7] LI Bin et al.

Vacuum drying kinetics characteristics of Chinese prickly ash based on Weibull distribution [J]. Food and Fermentation Industries, 2017, 43(11): 58 -64 .

[8] TIAN Jun-qing et al. Synthesis and structure characterization of octenyl succinic acid cellulose ester #br#[J]. Food and Fermentation Industries, 2017, 43(11): 65 .
[9] NIU Yi-qing et al. Research on stress relaxation properties and shelf life prediction of ‘Hass’ Avocado[J]. Food and Fermentation Industries, 2017, 43(11): 75 .
[10] YAO Hang-hang et al. Composition and physicochemical properties of acid soluble collagen of skin of Yunnan bream[J]. Food and Fermentation Industries, 2017, 43(11): 81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn