Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (3): 288-293    DOI: 10.13995/j.cnki.11-1802/ts.026005
  2020传统发酵食品产业国际高峰论坛专栏 本期目录 | 过刊浏览 | 高级检索 |
苹果酸-乳酸发酵细菌乙醇胁迫应答机制研究进展
盖昱梓1, 孙静娴1, 黄刚1, 金刚2,3,4*
1(宁夏大学 农学院,宁夏 银川,750021)
2(宁夏大学 食品与葡萄酒学院,宁夏 银川,750021)
3(葡萄与葡萄酒教育部工程研究中心,宁夏 银川,750021)
4(宁夏葡萄与葡萄酒工程技术中心,宁夏 银川,750021)
The response mechanism of bacteria to ethanol stress in malolactic fermentation
GE Yuzi1, SUN Jingxian1, HUANG Gang1, JIN Gang2,3,4*
1(School of Agriculture, Ningxia University, Yinchuan 750021, China)
2(School of Food and Wine, Ningxia University, Yinchuan 750021, China)
3(Engineering Research Center of Ministry of Grape and Wine, Yinchuan 750021, China)
4(Ningxia Grape and Wine Engineering Technology Center, Yinchuan 750021, China)
下载:  HTML   PDF (2389KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 由乳酸菌引起的苹果酸-乳酸发酵是生产优质葡萄酒的一个重要工艺过程。在这个过程中,乙醇是乳酸菌活性的主要抑制因子,特别是随着全球气候变暖带来的葡萄含糖量的增加,乙醇对乳酸菌的抑制作用越来越成为人们的研究热点。乙醇胁迫使得乳酸菌细胞结构发生变化,影响苹果酸-乳酸发酵的顺利进行。因此,乳酸菌在乙醇胁迫下的生长、代谢对葡萄酒生产是非常重要的。该文对苹果酸-乳酸发酵过程中常见乳酸细菌在乙醇胁迫下的应答机制进行了阐述,为乳酸菌乙醇胁迫耐受性机制的研究和优良菌株的选育提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
盖昱梓
孙静娴
黄刚
金刚
关键词:  苹果酸-乳酸发酵  乳酸菌  乙醇胁迫  应答机制    
Abstract: Malolactic fermentation (MLF) caused by lactic acid bacteria (LAB) is a necessary process in high-quality wine production. In this process, ethanol is the main factor that inhibit the activity of LAB. With the increase of sugar content in grapes caused by global warming, focus has been placed on the inhibitory effect of ethanol on LAB. Ethanol stress changes the cell structure of LAB and affects the MLF. Therefore, the growth and metabolism of LAB under ethanol stress are very important for wine production. The response mechanism of common LAB under ethanol stress during MLF is described, which provides a reference for the ethanol stress tolerance mechanism of LAB, as well as the screening of strains.
Key words:  malolactic fermentation (MLF)    lactic acid bacteria(LAB)    ethanol stress    response mechanism    omics
收稿日期:  2020-10-26      修回日期:  2020-11-05           出版日期:  2021-02-15      发布日期:  2021-03-08      期的出版日期:  2021-02-15
基金资助: 宁夏自然科学基金项目(NZ17018);第三批宁夏青年科技人才托举工程项目(TJGC2018073);国家科技重大专项项目(106001000000150012)
作者简介:  硕士研究生(金刚讲师为通讯作者,E-mail:gjinwine@hotmail.com)
引用本文:    
盖昱梓,孙静娴,黄刚,等. 苹果酸-乳酸发酵细菌乙醇胁迫应答机制研究进展[J]. 食品与发酵工业, 2021, 47(3): 288-293.
GE Yuzi,SUN Jingxian,HUANG Gang,et al. The response mechanism of bacteria to ethanol stress in malolactic fermentation[J]. Food and Fermentation Industries, 2021, 47(3): 288-293.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.026005  或          http://sf1970.cnif.cn/CN/Y2021/V47/I3/288
[1] BRIZUELA S N,BRAVO-FERRADA M B,POZO-BAYÓN Á M,et al.Changes in the volatile profile of pinot noir wines caused by patagonian Lactobacillus plantarum and Oenococcus oeni strains[J].Food Research International,2018,106:22-28.
[2] BRIZUELA S N,BRAVO-FERRADA M B,HENS V L D,et al.Comparative vinification assays with selected patagonian strains of Oenococcus oeni and Lactobacillus plantarum[J].LWT-Food Science and Technology,2016,77:348-355.
[3] CAPPELLO M S,ZAPPAROLI G,LOGRIECO A,et al.Linking wine lactic acid bacteria diversity with wine aroma and flavor[J].International Journal of Food Microbiology,2017,243:16-27.
[4] UBEDA C,HORNEDO-ORTEGA R,CEREZO B A,et al.Chemical hazards in grapes and wine,climate change and challenges to face[J].Food Chemistry,2020,314.DOI:100.1016/j.foodchem.2020.126222.
[5] 金刚. 苹果酸-乳酸发酵细菌的多样性及其耐酒精分析[D].杨凌:西北农林科技大学,2015.
JIN G.Study on diversity and ethanol tolerance of malolactic bacteria[D].Ynagling:Northwest A&F University,2015.
[6] ZHANG Y M,ROCK C O.Membrane lipid homeostasis in bacteria[J].Nature Reviews Microbiology,2008,6(3):222-233.
[7] 王婷婷, 李春,李佳栋,等.乙醇胁迫对植物乳杆菌膜生理及黏附性的影响[J].食品科学,2019,40(18):63-69.
Wang T T,LI C,LI J D,et al.Effect of ethanol stress on membrane physiology and adhesion of Lactobacillus plantarum[J].Food Science,2019,40(18):63-69.
[8] LAN C H,MARECHAL P A,MAI L T,et al.Fluorescent probes to evaluate the physiological state and activity of microbial biocatalysts:A guide for prokaryotic and eukaryotic investigation[J].Biotechnology Journal,2008,3(7):890-903.
[9] VAN B D V H,ABEE T,TEMPELAARS M,et al.Short-and long-term adaptation to ethanol stress and its cross-protective consequences in Lactobacillus plantarum[J].Applied and Environmental Microbiology,2011,77(15):5 247-5 256.
[10] BRAVO-FERRADA M B,GÓMEZ-ZAVAGLIA A,SEMORILE L,et al.Effect of the fatty acid composition of acclimated oenological Lactobacillus plantarumon the resistance to ethanol[J].Letters in Applied Microbiology,2014,60(2):155-161.
[11] YANG X,TENG K,LI L,et al.Transcriptional regulator AcrR increases ethanol tolerance through regulating fatty acid synthesis in Lactobacillus plantarum[J].Applied and Environmental Microbiology,2019,85(22).DOI:10.1128/aem.01690-19.
[12] 赵红玉, 李华,刘龙祥,等.酒酒球菌胁迫适应性机制的研究进展[J].中国食品学报,2019,48(4):556-561.
ZHAO H Y,LI H,LIU L X.The research progress of stress adaptation mechanism of Oenococcus oeni[J].Journal of Chinese Institute of Food Science and Technology,2019,48(4):556-561.
[13] 李中超. 酒酒球菌SD-2a质膜H+-ATPase特性的研究[D].杨凌:西北农林科技大学,2009.
LI Z C.Researches on the characteristics of plasma membrane H+-ATPase of Oenococcus oeni SD-2a[D].Yangling:Northwest A&F University,2009.
[14] CAFARO C,BONOMO M G,SALZANO G.Adaptive changes in geranylgeranyl pyrophosphate synthase gene expression level under ethanol stress conditions in Oenococcus oeni[J].Journal of Applied Microbiology,2013,116(1):71-80.
[15] NICOLAOU S A,GAIDA S M,PAPOUTSAKIS E T.Exploring the combinatorial genomic space in Escherichia coli for ethanol tolerance[J].Biotechnology Journal,2012,7(11):1 337-1 345.
[16] VOLLMER W,BLANOT D,DE PEDRO M A.Peptidoglycan structure and architecture[J].Fems Microbiology Reviews,2008,32(2):149-167.
[17] YUAN Y,BI C,NICOLAOU S A,et al.Overexpression of the Lactobacillus plantarum peptidoglycan biosynthesis murA2 gene increases the tolerance of Escherichia coli to alcohols and enhances ethanol production[J].Applied Microbiology and Biotechnology,2014,98(19):8 399-8 411.
[18] OLGUÍN N,CHAMPOMIER-VERGES M,ANGLADE P,et al.Transcriptomic and proteomic analysis of Oenococcus oeni PSU-1 response to ethanol shock[J].Food Microbiology,2015,51:87-95.
[19] DIMOPOULOU M,HAZO L,DOLS-LAFARGUE M.Exploration of phenomena contributing to the diversity of Oenococcus oeni exopolysaccharides[J].International Journal of Food Microbiology,2012,153(1-2):114-122.
[20] CIEZACK G,HAZO L,CHAMBAT G,et al.Evidence for exopolysaccharide production by Oenococcus oeni strains isolated from non-ropy wines[J].Journal of Applied Microbiology,2010,108(2):499-509.
[21] COSTANTINI A,RANTSIOU K,MAJUMDER A,et al.Complementing DIGE proteomics and DNA subarray analyses to shed light on Oenococcus oeni adaptation to ethanol in wine-simulated conditions[J].Journal of Proteomics,2015,123:114-127.
[22] SALEMA M,LOLKEMA J S,SAN ROMÃO M V,et al.The proton motive force generated in Leuconostoc oenos by L-malate fermentation[J].Journal of Bacteriology,1996,178(11):3 127-3 132.
[23] GAO Y,LIU Y,SUN M,et al.Physiological function analysis of Lactobacillus plantarum Y44 based on genotypic and phenotypic characteristics[J].Journal of Dairy Science,2020,103:5 916-5 939.
[24] MARGALEF-CATALA M,FELIS G E,REGUANT C,et al.Identification of variable genomic regions related to stress response in Oenococcus oeni[J].Food Research International,2017,102:625-638.
[25] CONTRERAS A,RIBBECK M,GUTIÉRREZ G D,et al.Mapping the physiological response of Oenococcus oeni to ethanol stress using an extended genome-scale metabolic model[J].Frontiers in Microbiology,2018,9:291.
[26] ZHANG J,DU G C,ZHANG Y,et al.Glutathione protects Lactobacillus sanfranciscensis against freeze-thawing,freeze-drying,and cold treatment[J].Applied and Environmental Microbiology,2010,76(9):2 989-2 996.
[27] SAMAD A,JAMES A,WONG J,et al.Insulin protects pancreatic acinar cells from palmitoleic acid-induced cellular injury[J].Journal of Biological Chemistry,2014,289:23 582-23 595.
[28] CHU-KY S,TOURDOT-MARECHAL R,MARECHAL P-A,et al.Combined cold,acid,ethanol shocks in Oenococcus oeni:Effects on membrane fluidity and cell viability[J].Biochimica Et Biophysica Acta,2005,1717(2):118-124.
[29] LIN Y,ZHAO H Y,LIU L X,et al.Heterologous expression of the puuE from Oenococcus oeni SD-2a in Lactobacillus plantarum WCFS1 improves ethanol tolerance[J].Journal of Basic Microbiology,2019,59(11):1-9.
[30] MOHEDANO M D I L,RUSSO P,DE L R V,et al.A proteome reference map of the wine lactic acid bacteria Oenococcus oeni ATCC BAA-1163[J].Open Biology,2014,4(2):130-154.
[31] ZHAO W Y,KANG Z K.Advanced progress on adaptive stress response of Oenococcus oeni[J].Journal of Northeast Agricultural University,2013,20(1),91-96.
[32] PASSERINI D,LAROUTE,VALÉRIE,et al.New insights into Lactococcus lactis diacetyl-and acetoin-producing strains isolated from diverse origins[J].International Journal of Food Microbiology,2013,160(3):329-336.
[33] OLGUIN N,BORDONS A,REGUANT C.Influence of ethanol and pH on the gene expression of the citrate pathway in Oenococcus oeni[J].Food microbiology,2009,26(2):197-203.
[34] ZOMER A L,BUIST G,LARSEN R,et al.Time-resolved determination of the CcpA regulon of Lactococcus lactis subsp.cremoris MG1363[J].Journal of Bacteriology,2006,189(4),1 366-1 381.
[35] DÍEZ L,SOLOPOVA A,FERNÁNDEZ-PÉREZ R,et al.Transcriptome analysis shows activation of the arginine deiminase pathway in Lactococcus lactis as a response to ethanol stress[J].International Journal of Food Microbiology,2017,257:41-48.
[36] HEBERT E M,RAYA R R,DE GIORI G S.Nutritional requirements and nitrogen-dependent regulation of proteinase activity of Lactobacillus helveticus CRL 1062[J].Applied and Environmental Microbiology,2000,66(12):5 316-5 321.
[37] PAPADIMITRIOU K,ALEGRIA A,BRON P A,et al.Stress physiology of lactic acid bacteria[J].Microbiology and Molecular Biology Reviews,2016,80:837-890.
[38] ZOTTA T,PARENTE E,RICCIARDI A.Aerobic metabolism in the genus Lactobacillus:Impact on stress response and potential applications in the food industry[J].Journal of Applied Microbiology,2017,122:857-869.
[39] MAZZOLI R,PESSIONE E,DUFOUR M,et al.Glutamate induced metabolic changes in Lactococcus lactis NCDO 2118 during GABA production:Combined transcriptomic and proteomic analysis[J].Amino Acids,2010,39(3):727-737.
[40] MASIP L,VEERAVALLI K,GEORGIOU G.The many faces of glutathione in bacteria[J].Antioxidants & Redox Signaling,2006,8(5-6):753-762.
[41] CECCONI D,MILLI A,RINALDUCCI S,et al.Proteomic analysis of Oenococcus oeni freeze-dried culture to assess the importance of cell acclimation to conduct malolactic fermentation in wine[J].Electrophoresis,2009,30(17):2 988-2 995.
[42] MARGALEF-CATALÀ M,ARAQUE I,BORDONS A,et al.Genetic and transcriptional study of glutathione metabolism in Oenococcus oeni[J].International Journal of Food Microbiology,2017,242:61-69.
[43] MARGALEF-CATALÀ M,ARAQUE I,WEIDMANN S,et al.Protective role of glutathione addition against wine-related stress in Oenococcus oeni[J].Food Research International,2016,90:8-15.
[44] CEBRIÁN G,CONDÓN S,MAÑAS P.Heat resistance,membrane fluidity and sublethal damage in Staphylococcus aureus cells grown at different temperatures[J].International Journal of Food Microbiology,2019,289:49-56.
[45] VALERIANO V D,PARUNGAO-BALOLONG M,Kang D K.In vitro evaluation of the mucin-adhesion ability and probiotic of Lactobacillus mucosae LM1[J].Journal of pplied Microbiology,2014,117:485-497.
[46] GRANDVALET C,COUCHENEY F,BELTRAMO C,et al.CTSR is the master regulator of stress response gene expression in Oenococcus oeni[J].Journal of Bacteriology,2005,187:5 614-5 623.
[47] DARSONVAL M,JULLIAT F,MSADEK T,et al.CTSR,the master regulator of stress-response in Oenococcus oeni,is a heat sensor interacting with ClpL1[J].Frontiers in Microbiology,2018,9:3 135.
[48] ZHAO H,YUAN L,HU K,et al.Heterologous expression of ctsR from Oenococcus oeni enhances the acid-ethanol resistance of Lactobacillus plantarum[J].FEMS Microbiology Letters,2019,366(15).DOI:10.1093/femsle/fnz192.
[49] FREES D,SAVIJOKI K,VARMANEN P,et al.Clp ATPases and ClpP proteolytic complexes regulate vital biological processes in low GC,Gram-positive bacteria[J].Molecular Microbiology,2010,63(5):1 285-1 295.
[50] 王艳霞. 简单节杆菌乙醇胁迫条件下的抗逆机制研究[D].天津:天津科技大学,2015.
WANG Y X.Study on tolerance mechanism of Arthtrobacter simplex under ethanol stress[D].Tianjin:Tianjin University of Science and Technology,2015.
[1] 金刚, 张雪, 谷晓博, 王辉, 白雪菲, 张众, 盖昱梓, 马雯. 贺兰山东麓不同子产区赤霞珠葡萄自然发酵对葡萄酒香气的影响[J]. 食品与发酵工业, 2021, 47(7): 153-160.
[2] 张波, 谢广发, 李国龙, 孙国昌, 金建明, 朱炜俊, 刘菊. 黄酒生物酸化浸米与浸米浆水的利用[J]. 食品与发酵工业, 2021, 47(7): 168-174.
[3] 梁鑫, 陈思雨, 赵育, 雷钰, 孔倩倩, 万欣, 张宝善. 乳酸菌和酵母菌发酵红枣汁工艺优化及成分分析[J]. 食品与发酵工业, 2021, 47(7): 175-182.
[4] 吴小艳, 刘文星, 刘忠义, 李希宇, 付满, 李汀. 芒果酸奶发酵及后熟过程中乳酸菌素的产生及其抑菌作用[J]. 食品与发酵工业, 2021, 47(7): 183-188.
[5] 熊蝶, 袁岚玉, 李媛媛, 范鹏飞, 冯武. 陕西泡菜中降解亚硝酸盐乳酸菌的筛选及其发酵特性与耐受性研究[J]. 食品与发酵工业, 2021, 47(6): 139-144.
[6] 邢晓莹, 刘毅, 张怀敏, 李江涌, 王如福. 山西老陈醋醋酸发酵过程中优良产酸菌株的筛选及鉴定[J]. 食品与发酵工业, 2021, 47(6): 201-207.
[7] 王曼, 杨琛, 覃晓玉, 康孟杰, 郝桂芳, 王承明. 鲊肉粉中乳酸菌和葡萄球菌的筛选及鉴定[J]. 食品与发酵工业, 2021, 47(5): 22-27.
[8] 宁亚维, 侯琳琳, 于同月, 刘茁, 杨正, 王志新, 贾英民. UPLC-MS/MS法快速测定乳酸菌发酵食品中的苯乳酸[J]. 食品与发酵工业, 2021, 47(5): 174-179.
[9] 史巧, 刘毕琴, 汤回花, 王馨蕊, 朱力舟, 赵楠, 李宏. 发酵蔬菜菌种应用及菌群调控研究进展[J]. 食品与发酵工业, 2021, 47(5): 273-281.
[10] 李娜, 崔梦君, 马佳佳, 雷炎, 郭壮, 张振东. 基于Illumina MiSeq测序和传统可培养方法的洪湖鲊广椒乳酸菌多样性研究[J]. 食品与发酵工业, 2021, 47(4): 110-115.
[11] 刘世琳, 李宇辉, 王俊钢, 卢士玲, 李晓楠, 李蕊婷, 岳建平. 不同产蛋白酶乳酸菌对风干牛肉蛋白质氧化的影响[J]. 食品与发酵工业, 2021, 47(20): 68-74.
[12] 李俊健, 高杰贤, 林锦铭, 黎攀, 杜冰. 不同发酵方式对柚皮泡菜理化特性和风味的影响[J]. 食品与发酵工业, 2021, 47(20): 212-218.
[13] 张颖, 刘同杰, 公丕民, 张兰威, 王淑梅, 易华西. 抗真菌乳酸菌的筛选及其在酸奶发酵中的应用[J]. 食品与发酵工业, 2021, 47(19): 84-89.
[14] 李俊娥, 毛亚玲, 祝霞, 韩舜愈, 杨学山. 苹果酸-乳酸发酵接种方式对赤霞珠干红葡萄酒香气品质的影响[J]. 食品与发酵工业, 2021, 47(19): 126-132.
[15] 刘莉颖, 宋天霖, 周艺萍, 李选文, 熊智. 青海传统发酵牦牛乳制品中乳酸菌资源发掘及评价[J]. 食品与发酵工业, 2021, 47(18): 70-76.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn