Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (9): 76-83    DOI: 10.13995/j.cnki.11-1802/ts.026049
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
多组学分析揭示拉格酵母应答高浓度麦汁机制
吴卓凡1,2, 呼子暄1,2, 王金晶1,2, 刘春凤1,2, 钮成拓1,2, 郑飞云1,2, 李崎1,2*
1(工业生物技术教育部重点实验室(江南大学),江苏 无锡,214122)
2(江南大学 生物工程学院,江苏 无锡,214122)
Multi-omics analysis reveals the mechanism of Saccharomyces pastorianus responding to high gravity wort
WU Zhuofan1,2, HU Zixuan1,2, WANG Jinjing1,2, LIU Chunfeng1,2, NIU Chengtuo1,2, ZHENG Feiyun1,2, LI Qi1,2*
1(The Key Laboratory of Industrial Biotechnology,Ministry of Education,Jiangnan University,Wuxi 214122,China)
2(School of Biotechnology,Jiangnan University,Wuxi 214122,China)
下载:  HTML  PDF (5843KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 拉格酵母(Saccharomyces pastorianus)在高浓酿造早期应答高浓度麦汁的基因调控对发酵过程至关重要,但是目前其对高浓度麦汁的应答机制还不明确。选取典型的拉格酵母M14作为研究对象,获得M14菌株在常浓度麦汁与高浓度麦汁处理后的细胞,提取总RNA进行转录组测序分析,提取胞内代谢物进行代谢组检测分析,并考察2种条件下的发酵指标与糖利用情况。转录组分析结果表明,有191个基因显著调整,KEGG(Kyoto encyclopedia of genes and genomes)富集和GO(gene ontology)富集结果表明,差异基因主要在碳代谢与氨基酸代谢途径。代谢组分析结果表明,有30个代谢物存在显著差异,KEGG富集表明,差异代谢物主要存在于氨基酸代谢。进一步分析确定了13个相关的重要基因。该研究探究了拉格酵母对高浓度麦汁在分子水平上的应答机制,为揭示啤酒高浓酿造机制与耐高浓度酵母的选育奠定了基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴卓凡
呼子暄
王金晶
刘春凤
钮成拓
郑飞云
李崎
关键词:  拉格酵母  高浓酿造  转录组  代谢组  啤酒    
Abstract: Gene regulation of lager yeast (Saccharomyces pastorianus) against high gravity wort in the early stage of high gravity brewing is crucial for the fermentation process, but the response mechanism is still unclear. In this study, the typical lager yeast M14 was selected as the research object, and the cells of M14 strain were obtained after treatment with normal gravity wort and high gravity wort. The total RNA was extracted for transcriptomic sequencing analysis, and the intracellular metabolites were extracted for metabolomic detection and analysis. The fermentation indexes and sugar utilization under two conditions were also investigated. Transcriptomic analysis showed that 191 genes were significantly regulated, which were identified mainly existed in carbon metabolism and amino acid metabolism pathways through KEGG enrichment and GO enrichment analysis. Metabolomic analysis revealed significant differences for 30 metabolites, and KEGG enrichment analysis indicated that differential metabolites mainly existed in amino acid metabolism. 13 related genes were identified through further analysis. The molecular response mechanism of lager yeast to high gravity wort was explored, which laid a foundation for further revealing the brewing mechanism of high gravity beer and the breeding of high gravity tolerant yeast.
Key words:  Saccharomyces pastorianus    high gravity brewing    transcriptomic    metabolomic    beer
收稿日期:  2020-10-30      修回日期:  2020-11-24           出版日期:  2021-05-15      发布日期:  2021-06-03      期的出版日期:  2021-05-15
基金资助: 高等学校学科创新引智计划项目(111-2-06);国家自然科学基金项目(31571942;31601558;31771963)
作者简介:  硕士研究生(李崎教授为通讯作者,E-mail:liqi@Jiangnan.edu.cn)
引用本文:    
吴卓凡,呼子暄,王金晶,等. 多组学分析揭示拉格酵母应答高浓度麦汁机制[J]. 食品与发酵工业, 2021, 47(9): 76-83.
WU Zhuofan,HU Zixuan,WANG Jinjing,et al. Multi-omics analysis reveals the mechanism of Saccharomyces pastorianus responding to high gravity wort[J]. Food and Fermentation Industries, 2021, 47(9): 76-83.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.026049  或          http://sf1970.cnif.cn/CN/Y2021/V47/I9/76
[1] LINKO M,HAIKARA A,RITALA A,et al.Recent advances in the malting and brewing industry[J].Journal of Biotechnology,1998,65(2-3):85-98.
[2] SAERENS S,DUONG C,NEVOIGT E.Genetic improvement of brewer's yeast:Current state,perspectives and limits[J].Applied Microbiology and Biotechnology,2010,86(5):1 195-1 212.
[3] PULIGUNDLA P,SMOGROVICOVA D,MOK C,et al.Recent developments in high gravity beer-brewing[J].Innovative Food Science & Emerging Technologies,2020,64.DOI:10.1016/j.ifsect.2020.102399.
[4] BURPHAN T,TATIP S,LIMCHAROENSUK T,et al.Enhancement of ethanol production in very high gravity fermentation by reducing fermentation-induced oxidative stress in Saccharomyces cerevisiae[J].Scientific Reports,2018,8(1).DOI:10.1038/S41598-018-31558-4.
[5] 郭立芸. 18 °P高浓酿造抗葡萄糖阻遏效应啤酒酵母的选育[J].食品与发酵工业,2015,41(4):91-96.
GUO L.Selection of brewing yeast with glucose repression resistance under the very high gravity brewing (18 °P)[J].Food and Fermentation Industries,2015,41(4):91-96.
[6] VIRVE V,JOHN L.Overexpressed maltose transporters in laboratory and lager yeasts:Localization and competition with endogenous transporters[J].Yeast,2018,35(10):567-576.
[7] LEI H,FENG L,PENG F,et al.Amino acid supplementations enhance the stress resistance and fermentation performance of Lager yeast during high gravity fermentation[J].Applied Biochemistry & Biotechnology,2018,187(1):540-555.
[8] WANG Z,GERSTEIN M,SNYDER M.RNA-Seq:A revolutionary tool for transcriptomics[J].Nature Reviews Genetics,2009,10(1):57-63.
[9] HUBMANN G,FOULQUIE-MORENO M,NEVOIGT E,et al.Quantitative trait analysis of yeast biodiversity yields novel gene tools for metabolic engineering[J].Metabolic Engineering,2013,17(1):68-81.
[10] XU X,WANG J,BAO M,et al.Reverse metabolic engineering in lager yeast:impact of the NADH/NAD+ ratio on acetaldehyde production during the brewing process[J].Applied Microbiology and Biotechnology,2019,103(2):869-880.
[11] LIU C,LI Q,NIU C,et al.Genome sequence of the lager-brewing yeast Saccharomyces sp. strain M14,used in the high-gravity brewing industry in China[J].Genome Announcements,2017,5(43):e01 194-01 117.
[12] 顾国贤. 酿造酒工艺学[M].北京:中国轻工业出版社,1996.
GU G X.Brewing Technology[M].Beijing:China light industry press,1996
[13] 李崎, 刘春凤.ASBC分析方法[M].北京:中国轻工业出版社,2012.
LI Q,LIU C.ASBC Analysis Method[M].Beijing:China Light Industry Press,2012.
[14] ANDERS S,HUBER W.Differential expression analysis for sequence count data[J].Geneome Biology,2010,11:R106.
[15] YUAN M,BREITKOPF S B,YANG X,et al.A positive/negative ion-switching,targeted mass spectrometry-based metabolomics platform for bodily fluids,cells,and fresh and fixed tissue[J].Nature Protocols,2012,7(5):872-881.
[16] SWAN T M,WATSON K.Membrane fatty acid composition and membrane fluidity as parameters of stress tolerance in yeast[J].Canadian Journal of Microbiology,1997,43(1):70-77.
[17] BUBIS J A,SPASSKAYA D S,GORSHKOV V A,et al.Rpn4 and proteasome-mediated yeast resistance to ethanol includes regulation of autophagy[J].Applied Microbiology & Biotechnology,2020,104(9):4 027-4 041.
[18] PIRES E J.Biochemistry of Beer Fermentation[M].Wiley-Blackwell,2015.
[19] LEI H,XU H,FENG L,et al.Fermentation performance of lager yeast in high gravity beer fermentations with different sugar supplementations[J].Journal of Bioence & Bioengineering,2016,122(5):583-588.
[20] PIDDOCKE M P,KREISZ S,HELDT-HANSEN H P,et al.Physiological characterization of brewer′s yeast in high-gravity beer fermentations with glucose or maltose syrups as adjuncts[J].Applied Microbiology and Biotechnology, 2009,84(3):453-464.
[21] NGUYEN T D,WALKER M E,GARDNER J M,et al.Appropriate vacuolar acidification in Saccharomyces cerevisiae is associated with efficient high sugar fermentation[J].Food Microbiology,2018,70(1):262-268.
[22] H TAKAGI F I S N.Isolation of freeze-tolerant laboratory strains of Saccharomyces cerevisiae from proline-analogue-resistant mutants[J].Applied Microbiology & Biotechnology,1997,47(1):405-411.
[23] TREVISOL E T V,PANEK A D,DE MESQUITA J F,et al.Regulation of the yeast trehalose-synthase complex by cyclic AMP-dependent phosphorylation[J].Biochimicanet Biophysica Acta-General Subjects,2014,1 840(6):1 646-1 650.
[24] WIECZORKE R,KRAMPE S,WEIERSTALL T,et al.Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae[J].Febs Letters,1999,464(3):123-128.
[25] MARC P,KATTIE L,REMY M,et al.Analysis of Saccharomyces cerevisiae hexose carrier expression during wine fermentation:both low-and high-affinity Hxt transporters are expressed[J].Fems Yeast Research,2010,5(4-5):351-361.
[1] 王巧莉, 孔梓璇, 谭强飞, 贠建民, 张紊玮, 赵风云. 草菇组织分离继代中菌种退化对相关酶活力的影响[J]. 食品与发酵工业, 2021, 47(8): 1-5.
[2] 唐富豪, 滕建文, 韦保耀, 黄丽, 夏宁, 覃超. 基于非靶向代谢组学评价传统发酵对客家酸芥菜酚类化合物组成的影响[J]. 食品与发酵工业, 2021, 47(8): 128-133.
[3] 黄藩, 唐晓波, 徐斌, 张厅, 罗凡, 马泽强. 不同光质萎凋对贡眉白茶滋味品质的影响[J]. 食品与发酵工业, 2021, 47(6): 127-133.
[4] 李思源, 李培瑜, 刘弈彤, 刘海杰, 张泽俊, 沙坤. 代谢组学在食品科学中的应用进展[J]. 食品与发酵工业, 2021, 47(5): 252-258.
[5] 杨新, 陈莉, 杨双全, 卢红梅, 章之柱. 不同培养条件下酿酒酵母菌的转录组差异分析[J]. 食品与发酵工业, 2021, 47(4): 102-109.
[6] 宋露露, 刘小航, 郭学武, 陈叶福, 肖冬光. 钙转运蛋白Gdt1过表达对酿酒酵母蛋白酶A胞外分泌的影响[J]. 食品与发酵工业, 2020, 46(9): 10-17.
[7] 田甜甜, 孙军勇, 蔡国林, 杨华, 吴殿辉, 陆健. 基于转录组学的酿酒酵母耐酸机制解析[J]. 食品与发酵工业, 2020, 46(6): 1-7.
[8] 欧科, 陈福欣, 王婷, 冯光文, 严贝贝, 白巧秀, 钱卫东, 毛培宏. 基于代谢组学方法的两株酿酒酵母菌胞内差异代谢产物分析[J]. 食品与发酵工业, 2020, 46(4): 39-44.
[9] 郑瑞龙, 索婧怡, 钮成拓, 郑飞云, 易崇华, 圣弟青, 王金晶, 李崎, 刘春凤. 紫(黑)米在酿酒行业中的应用[J]. 食品与发酵工业, 2020, 46(23): 263-268.
[10] 冉咏兰, 阚建全. DEHP胁迫下萝卜的亚显微结构及应答转录组分析[J]. 食品与发酵工业, 2020, 46(21): 98-106.
[11] 王璇, 欧科, 冯光文, 陈福欣, 王婷, 买买提热夏提·买买提, 钱卫东, 毛培宏. 重组酵母菌N6076的差异表达基因功能及甲羟戊酸代谢分析[J]. 食品与发酵工业, 2020, 46(17): 22-26.
[12] 于淼, 王长远, 王霞. 代谢组学在植物多酚类物质检测分析中的应用[J]. 食品与发酵工业, 2020, 46(13): 280-285.
[13] 魏雯丽, 宫尾茂雄, 吴正云, 张文学. 基于宏转录组学技术解析工业豇豆泡菜发酵过程中活性微生物群落结构变化[J]. 食品与发酵工业, 2020, 46(10): 60-65.
[14] 张华东, 郭学武, 肖冬光. 醋酸菌对高产酯酿酒酵母酒精发酵及酯醇代谢的影响[J]. 食品与发酵工业, 2020, 46(1): 36-42.
[15] 毛江川, 王金晶, 郑飞云, 刘春凤, 钮成拓, 李崎. 蛋氨酸、半胱氨酸及苏氨酸对啤酒酵母产二氧化硫和乙醛的影响[J]. 食品与发酵工业, 2019, 45(9): 67-73.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn