Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (16): 294-299    DOI: 10.13995/j.cnki.11-1802/ts.026056
  综述与专题评论 本期目录 | 过刊浏览 | 高级检索 |
组学技术在木质素降解酶系挖掘中的应用进展
李艳, 陈复生, 杨趁仙*
(河南工业大学 粮油食品学院,河南 郑州, 450001)
Application progress of omics technology on lignin degrading enzyme system mining
LI Yan, CHEN Fusheng, YANG Chenxian*
(College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China)
下载:  HTML  PDF (2423KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 农业废弃物中蕴含丰富的木质纤维素资源,对木质纤维素进行生物发酵可以有效利用可再生的生物质资源。木质素作为物理屏障,严重阻碍了纤维素的开发与利用。生物法降解木质素具有操作简便、环保的优点。该文综述了木质素降解过程中,解聚阶段和矿化阶段相关的酶类及其作用机制;总结了基于基因组学、转录组学以及蛋白质组学技术,深入挖掘微生物中的木质素降解酶系,为生物质资源的高效利用奠定了基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李艳
陈复生
杨趁仙
关键词:  木质素    降解  组学    
Abstract: Agricultural waste contains abundant lignocellulose resources. Biological fermentation of lignocellulose can effectively utilize renewable biomass resources. As a physical barrier, lignin hinders the development and utilization of cellulose seriously. Biodegradation of lignin has the advantages of simple operation and environmental protection. This paper summarized the enzymes and their mechanism related to the depolymerization and mineralization stages in the process of lignin degradation. Based on genomics, transcriptomics and proteomics, the lignin degradation enzyme system in microorganisms were explored and summarized, which would lay the foundation for the efficient use of biomass resources.
Key words:  lignin    enzyme    degradation    omics
收稿日期:  2020-11-01      修回日期:  2020-12-14                发布日期:  2021-09-10      期的出版日期:  2021-08-25
基金资助: 国家自然科学基金项目(21676073);河南工业大学博士基金(2019BS029)
作者简介:  硕士研究生(杨趁仙讲师为通讯作者,E-mail:ycxyou@163.com)
引用本文:    
李艳,陈复生,杨趁仙. 组学技术在木质素降解酶系挖掘中的应用进展[J]. 食品与发酵工业, 2021, 47(16): 294-299.
LI Yan,CHEN Fusheng,YANG Chenxian. Application progress of omics technology on lignin degrading enzyme system mining[J]. Food and Fermentation Industries, 2021, 47(16): 294-299.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.026056  或          http://sf1970.cnif.cn/CN/Y2021/V47/I16/294
[1] WANG W Y, ZHANG C, SUN X X, et al.Efficient environmentally-friendly and specific valorization of lignin:Promising role of non-radical lignolytic enzymes[J].World Journal of Microbiology & Biotechnology, 2017, 33(6):1-14.
[2] 郑娟善, 张剑搏, 梁泽毅, 等.瘤胃微生物对木质纤维素降解的研究进展[J].动物营养学报, 2020, 32(5):2 010-2 019.
ZHENG J S, ZHANG J B, LIANG Z Y, et al.Research progress on the degradation of lignocellulose by rumen microorganisms[J].Chinese Journal of Animal Nutrition, 2020, 32(5):2 010-2 019.
[3] LI C, CHEN C, WU X F, et al.Recent advancement in lignin biorefinery:With special focus on enzymatic degradation and valorization[J].Bioresource Technology, 2019, 291:121 898.
[4] 杜洋. 秸秆焚烧现状和秸秆利用途径探讨及前景展望[J].现代农业, 2020(7):90-91.
DU Y.Discussion on the status quo of straw burning and the ways of straw utilization and prospects[J].Modern Agriculture, 2020(7):90-91.
[5] 钟平, 张超旭, 王丽, 等.秸秆资源综合利用研究[J].现代农业, 2020(6):4-5.
ZHONG P, ZHANG C X, WANG L, et al.Research on comprehensive utilization of straw resources[J].Modern Agriculture, 2020(6):4-5.
[6] 李凤莲. 农用有机肥料资源分析与开发利用[J].农业技术与装备, 2017(5):33-35.
LI F L.Analysis and development of agricultural organic fertilizer resources[J].Agricultural Technology and Equipment, 2017(5):33-35.
[7] KRICKA W, FITZPATRICK J, BOND U.Metabolic engineering of yeasts by heterologous enzyme production for degradation of cellulose and hemicellulose from biomass:A perspective[J].Frontiers in Microbiology, 2014, 5:174.
[8] YADAV M, PARITOSH K, PAREEK N, et al.Coupled treatment of lignocellulosic agricultural residues for augmented biomethanation[J].Journal of Cleaner Production, 2019, 213:75-88.
[9] WAN C X, LI Y B.Fungal pretreatment of lignocellulosic biomass[J].Biotechnology advances, 2012, 30(6):1 447-1 457.
[10] 谢长校, 孙建中, 李成林, 等.细菌降解木质素的研究进展[J].微生物学通报, 2015, 42(6):1 122-1 132.
XIE C X, SUN J Z, LI C L, et al. Exploring the lignin degradation by bacteria[J]. Microbiology China, 2015, 42(6):1 122-1 132.
[11] 乔悦, 甘洪宇, 李响, 等.木质素降解技术研究进展[J].化工科技, 2019, 27(4):84-88.
QIAO Y, GAN H Y, LI X, et al.Research on degradation of lignin[J].Science & Technology in Chemical Industry, 2019, 27(4):84-88.
[12] 熊乙, 杨富裕, 倪奎奎, 等.微生物在木质纤维素降解中的应用进展[J].草学, 2019(5):1-7.
XIONG Y, YANG F Y, NI K K, et al. Progress in application of microorganisms in lignocellulosic degradation[J]. Journal of Grassland and Forage Science, 2019(5):1-7.
[13] 杨茜, 李维尊, 鞠美庭, 等.微生物降解木质纤维素类生物质固废的研究进展[J].微生物学通报, 2015, 42(8):1 569-1 583.
YANG Q, LI W Z, JU M T, et al. Advances in microbial degradation of lignocelluloses biomass solid waste-a review[J]. Microbiology China, 2015, 42(8):1 569-1 583.
[14] KAMIMURA N, SAKAMOTO S, MITSUDA N, et al.Advances in microbial lignin degradation and its applications[J].Current Opinion in Biotechnology, 2019, 56:179-186.
[15] HE J, HUANG C X, LAI C H, et al.The effect of lignin degradation products on the generation of pseudo-lignin during dilute acid pretreatment[J].Industrial Crops & Products, 2020, 146:112 205.
[16] SÁEZ-JIMÉNEZ V, BARATTO M C, POGNI R, et al.Demonstration of lignin-to-peroxidase direct electron transfer.A TRANSIENT-STATE KINETICS, DIRECTED MUTAGENESIS, EPR AND NMR STUDY.[J].Journal of Biological Chemistry, 2015, 290(51):30 268.
[17] 洪伟杰. 木素过氧化物酶和乙二醛氧化酶的共固定化及在手性合成中的应用[D].杭州:浙江工业大学,2006.
HONG W J.Study on coimmobilization of lignin peroxidase and glyoxal oxidase and application in asymmetric synthesis[D].Hangzhou:Zhejiang University of Technology, 2006.
[18] SU J, FU J J, WANG Q, et al.Laccase:A green catalyst for the biosynthesis of poly-phenols[J].Critical Reviews in Biotechnology, 2018, 38(2):294-307.
[19] 孙正茂, 肖克宇.真菌木质素降解酶系的研究进展[J].广东饲料, 2006,15(2):41-43.
SUN Z M, XIAO K Y.Research progress of fungal lignin degrading enzyme system[J].Guangdong Feed, 2006,15(2):41-43.
[20] LIU C J, ZHANG W J, QU M R, et al.Heterologous expression of laccase from Lentinula edodes in Pichia pastoris and its application in degrading rape straw[J].Frontiers in Microbiology, 2020, 11:1 086.
[21] 鲁伦慧. 农业废物堆肥中木质素降解功能微生物群落结构研究[D].长沙:湖南大学,2014.
LU L H.Researches on the ligninolytic functional microbial communities constructions during agricultural waste composting[D].Changsha:Hunan University, 2014.
[22] ZHANG S T, XIAO J L, WANG G, et al.Enzymatic hydrolysis of lignin by ligninolytic enzymes and analysis of the hydrolyzed lignin products[J].Bioresource Technology, 2020, 304:122 975.
[23] BUGG T D H, WILLIAMSON J J, RASHID G M M.Bacterial enzymes for lignin depolymerisation:New biocatalysts for generation of renewable chemicals from biomass[J].Current Opinion in Chemical Biology, 2020,55:26-33.
[24] YOSHIDA T, SUGANO Y.A structural and functional perspective of DyP-type peroxidase family[J].Archives of Biochemistry and Biophysics, 2015, 574:49-55.
[25] LINDE D, RUIZ-DUEÑAS F J, FERNÁNDEZ-FUEYO E, et al.Basidiomycete DyPs:Genomic diversity, structural-functional aspects, reaction mechanism and environmental significance[J].Archives of Biochemistry and Biophysics, 2015, 574:66-74.
[26] DE GONZALO G, COLPA D I, HABIB M H M, et al.Bacterial enzymes involved in lignin degradation[J].Journal of Biotechnology, 2016, 236:110-119.
[27] SILVEIRA C M, MOEE L, FRAAIJE M, et al.Resonance Raman view of the active site architecture in bacterial DyP-type peroxidases[J].RSC Advances, 2020, 10(19):11 095-11 104.
[28] YU W N, LIU W N, HUANG H Q, et al.Application of a novel alkali-tolerant thermostable DyP-type peroxidase from Saccharomonospora viridis DSM 43017 in biobleaching of Eucalyptus kraft pulp[J].PLoS One, 2014, 9(10):e110 319.
[29] TSUJI Y, VANHOLME R, TOBIMATSU Y, et al.Introduction of chemically labile substructures into Arabidopsis lignin through the use of LigD, the Cα-dehydrogenase from Sphingobium sp.strain SYK-6[J].Plant Biotechnology Journal, 2015, 13(6):821-832.
[30] BUGG T D H, WILLIAMSON J J, RASHID G M M.Bacterial enzymes for lignin depolymerisation:New biocatalysts for generation of renewable chemicals from biomass[J].Current Opinion in Chemical Biology, 2020, 55:26-33.
[31] CHAUHAN P S.Role of various bacterial enzymes in complete depolymerization of lignin:A review[J].Biocatalysis and Agricultural Biotechnology, 2020, 23:101 498.
[32] FUJITA M, SAKUMOTO T, TANATANI K, et al.Iron acquisition system of Sphingobium sp.strain SYK-6, a degrader of lignin-derived aromatic compounds[J].Scientific Reports, 2020, 10(1):12 177.
[33] MATHIEU Y, PIUMI F, VALLI R, et al.Activities of secreted aryl alcohol quinone oxidoreductases from Pycnoporus cinnabarinus provide insights into fungal degradation of plant biomass[J].Applied and Environmental Microbiology, 2016, 82(8):2 411-2 423.
[34] LIU E S, LI M X, ABDELLA A, et al.Development of a cost-effective medium for submerged production of fungal aryl alcohol oxidase using a genetically modified Aspergillus nidulans strain[J].Bioresource Technology, 2020, 305:123 038.
[35] RASHID G M M, TAYLOR C R, LIU Y, et al.Identification of manganese superoxide dismutase from Sphingobacterium sp.T2 as a novel bacterial enzyme for lignin oxidation[J].ACS Chemical Biology, 2015, 10(10):2 286-2 294.
[36] 田朝光, 马延和.真菌降解木质纤维素的功能基因组学研究进展[J].生物工程学报, 2010, 26(10):1 333-1 339.
TIAN C G, MA Y H.Progress in lignocellulose deconstruction by fungi[J].Chinese Journal of Bioengineering, 2010, 26(10):1 333-1 339.
[37] LIU Y, WU Y Y, ZHANG Y, et al.Lignin degradation potential and draft genome sequence of Trametes trogii S0301[J].Biotechnology for Biofuels, 2019, 12:256.
[38] KUMAR M, VERMA S, GAZARA R K, et al.Genomic and proteomic analysis of lignin degrading and polyhydroxyalkanoate accumulating β-proteobacterium Pandoraea sp.ISTKB[J].Biotechnology for Biofuels, 2018, 11(1):1-23.
[39] RIYADI F A, TAHIR A A, YUSOF N, et al.Enzymatic and genetic characterization of lignin depolymerization by Streptomyces sp.S6 isolated from a tropical environment[J].Scientific Reports, 2020, 10:7 813.
[40] MORAES E C, ALVAREZ T M, PERSINOTI G F, et al.Lignolytic-consortium omics analyses reveal novel genomes and pathways involved in lignin modification and valorization[J].Biotechnology for Biofuels, 2018, 11:75.
[41] ZHU D C, SI H B, ZHANG P P, et al.Genomics and biochemistry investigation on the metabolic pathway of milled wood and alkali lignin-derived aromatic metabolites of Comamonas serinivorans SP-35[J].Biotechnology for Biofuels, 2018, 11:338.
[42] 魏雯丽, 宫尾茂雄, 吴正云, 等.基于宏转录组学技术解析工业豇豆泡菜发酵过程中活性微生物群落结构变化[J].食品与发酵工业, 2020, 46(10):60-65.
WEI W L, MIYAO Shigeo, WU Z Y, et al.Analysis of active microbial community structure changes in industrial cowpea pickle fermentation based on meta-transcriptomics technology[J].Food and Fermentation Industries, 2020, 46(10):60-65.
[43] 吴小峰. 基于宏转录组学技术研究饲草类型和季节对麝牛瘤胃微生物组的影响[D].雅安:四川农业大学,2017.
WU X F.The effect of forage type and season on the microbiota of musk ox rumen through macrotranscriptomics approaches[D].Ya′an:Agricultural University, 2017.
[44] 冯茜. 基于蛋白质组学的烟曲霉G-13木质素降解机理研究[D].哈尔滨:哈尔滨理工大学,2018.
FENG Q.Proteomics analysis of lignin degradation machanism of lignindagrading fungal Aspergillus fumigatus G-13[D].Harbin:Harbin University of Science and Technology, 2018.
[45] ADAV S S, CHAO L T, SZE S K.Quantitative secretomic analysis of Trichoderma reesei strains reveals enzymatic composition for lignocellulosic biomass degradation[J].Molecular & Cellular Proteomics, 2012, 11(7):DOI:10.1074/mcp.M111.012419.
[1] 蒋彤, 纪杭燕, 柏玉香. Lactobacillus reuteri 121 4,6-α-葡萄糖基转移酶GtfBdN改性薯类淀粉产物结构及理化特性研究[J]. 食品与发酵工业, 2021, 47(9): 42-48.
[2] 孙杨, 王丽君, 杨套伟, 付维来, 易敢峰, 饶志明. 氧甲基转移酶编码基因ploy (A)加尾促进粘质沙雷氏菌合成灵菌红素能力研究[J]. 食品与发酵工业, 2021, 47(9): 49-56.
[3] 赵雨, 郭建华, 张春枝. 蜡状芽孢杆菌ZY12产磷脂酶D的影响因素[J]. 食品与发酵工业, 2021, 47(9): 57-62.
[4] 李童, 钱斌, 周建弟, 徐岩, 王栋. 中性脲酶固定化降解黄酒中尿素[J]. 食品与发酵工业, 2021, 47(9): 70-75.
[5] 解天慧, 石慧. 大肠杆菌O157∶H7噬菌体EC-p9的内溶酶和穿孔素的特性预测及克隆表达[J]. 食品与发酵工业, 2021, 47(9): 107-113.
[6] 符群, 郐滨, 钟明旭, 吴小杰. 超声波辅助酶解法提取北虫草菌素及其降血糖活性研究[J]. 食品与发酵工业, 2021, 47(9): 120-127.
[7] 蔡燕, 田丹, 严鑫, 李百裕, 李宇杰, 于丽娟, 吴锦明. 一步法快速从脱脂豆粉中三相分离脂肪氧合酶[J]. 食品与发酵工业, 2021, 47(9): 149-153.
[8] 张恕铭, 曾林, 孙向阳, 汪杰, 孙擎, 张庆, 谭霄. 屎肠球菌与植物乳杆菌共培养产γ-氨基丁酸条件优化及关键酶活性研究[J]. 食品与发酵工业, 2021, 47(9): 154-159.
[9] 王巧莉, 孔梓璇, 谭强飞, 贠建民, 张紊玮, 赵风云. 草菇组织分离继代中菌种退化对相关酶活力的影响[J]. 食品与发酵工业, 2021, 47(8): 1-5.
[10] 赵帅东, 刘婷, 季旭, 杨梓璐, 尹轩威, 施文正, 汪立平, 宁喜斌. 利用外源蛋白酶和曲霉菌YL001加速沙丁鱼鱼露的发酵[J]. 食品与发酵工业, 2021, 47(8): 14-20.
[11] 杨丽嫔, 杨倩, 王黎丽, 周瑞敏, 高成成, 刘琴. 铁棍山药黏液复合乳液保鲜鲜切马铃薯研究[J]. 食品与发酵工业, 2021, 47(8): 46-53.
[12] 刘昕, 张驰, 薛艾莲, 赵吉春, 曾凯芳, 明建. 超声-酶法提取的豆腐柴低酯果胶理化性质及结构表征[J]. 食品与发酵工业, 2021, 47(8): 108-115.
[13] 唐富豪, 滕建文, 韦保耀, 黄丽, 夏宁, 覃超. 基于非靶向代谢组学评价传统发酵对客家酸芥菜酚类化合物组成的影响[J]. 食品与发酵工业, 2021, 47(8): 128-133.
[14] 曾玉雪, 罗惠波, 余东, 黄丹, 郭辉祥, 邹永芳. 浓香型大曲中降解生物胺菌株的筛选及应用[J]. 食品与发酵工业, 2021, 47(8): 145-151.
[15] 周慧宁, 张一晟, 张惠玲, 李海峰. 一株可降解马铃薯淀粉汁水中蛋白质菌株筛选与发酵产物分析[J]. 食品与发酵工业, 2021, 47(8): 158-164.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn