Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (5): 79-85    DOI: 10.13995/j.cnki.11-1802/ts.026066
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
枸杞酒酿造过程中的酚酸降解规律
耿嘉钰1, 程焕1,2, 张惠玲1*
1(宁夏大学 农学院, 宁夏食品微生物应用技术与安全控制重点实验室, 宁夏 银川, 750021)
2(浙江大学 生物系统工程与食品科学学院, 智能食品加工技术与装备国家地方联合工程实验室, 浙江省农产品加工技术研究重点实验室, 浙江省健康食品制造与品质控制国际合作基地, 浙江大学馥莉食品研究院, 浙江 杭州, 310058)
Study on the degradation of phenolic acid during brewing of Lycium barbarum wine
GENG Jiayu1, CHENG Huan1,2, ZHANG Huiling1*
1(College of Agriculture, Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Ningxia University, Yinchuan 750021, China)
2(College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China)
下载:  HTML   PDF (1688KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 枸杞酒发酵过程中酵母代谢产生一些有机酸、醇、醛、酮等复杂的物质, 使发酵环境发生了变化, 迫使酚酸物质在此环境下发生氧化、还原或与环境中的物质发生化学反应从而产生各种降解产物。实验测定了酚酸物质在发酵过程中含量的变化及降解产物, 并通过模拟实验, 验证枸杞发酵时可能产生的降解产物。结果表明, 从实验所用枸杞中共检测出7种酚酸单体, 发酵后酚酸降解产物共8种, 这些物质大部分都在最不稳定的双键位置断裂, 同时容易在羰基被还原、羟基被氧化, 产生2, 5-二甲基吡嗪、苯乙酮、4-乙基愈创木酚、丙酸、苯乙酸乙酯、2, 4-二叔丁基苯酚、4-甲氧基苯乙烯和乙酸异戊酯。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
耿嘉钰
程焕
张惠玲
关键词:  枸杞酒  酚酸  发酵  降解    
Abstract: During the fermentation of Lycium barbarum wine, various substances, mainly organic acids, alcohols, aldehydes and ketones, were produced from yeast metabolization. The fermentation environment keeps changing, and phenolic acids may be oxidized, reduced or reacted with other substances, yielding various degradation products. In this study, the changes of phenolic acid contents were evaluated during fermentation and the relative degradation products were identified, followed by a verification through simulation experiment. The results showed that seven kinds of phenolic acid monomers were detected and eight kinds of phenolic acid degradation products were obtained after fermentation. Most of these substances break at the most unstable double bond positions and are prone to reduction of carbonyl groups and oxidation of hydroxyl groups, producing 2, 5-dimethylpyrazine, acetophenone, 4-ethyl guaiacol, propionic acid, ethyl phenylacetate, 2, 4-tert-butylphenol, 4-methoxystyrene and iso-amyl acetate.
Key words:  Lycium barbarum wine    phenolic acid    fermentation    degradation
收稿日期:  2020-11-02      修回日期:  2020-11-11                发布日期:  2021-03-31      期的出版日期:  2021-03-15
作者简介:  硕士研究生(张惠玲教授为通讯作者, E-mail:zhl5792@163.com)
引用本文:    
耿嘉钰,程焕,张惠玲. 枸杞酒酿造过程中的酚酸降解规律[J]. 食品与发酵工业, 2021, 47(5): 79-85.
GENG Jiayu,CHENG Huan,ZHANG Huiling. Study on the degradation of phenolic acid during brewing of Lycium barbarum wine[J]. Food and Fermentation Industries, 2021, 47(5): 79-85.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.026066  或          http://sf1970.cnif.cn/CN/Y2021/V47/I5/79
[1] YAO R Y, HEINRICH M, WECKERLE C S.The genus Lycium as food and medicine:A botanical, ethnobotanical and historical review[J].Journal of Ethnopharmacology, 2018, 212:50-66.
[2] 武芸, 王春林, 王丽朋, 等.黑果枸杞多酚吸附分离特性及抗氧化性研究[J].食品与发酵工业, 2020.DOI:10.13995/j.cnki.11-1802/ts.025714.
WU Y, WANG C L, WANG L P, et al.Lycium ruthenicum Murr.polyphenols adsorption separation properties and oxidation resistance[J].Food and Fermentation Industries, 2020.DOI:10.13995/j.cnki.11-1802/ts.025714.
[3] LI Y, ZOU X, SHEN T, et al.Determination of geographical origin and anthocyanin content of black goji berry (Lycium ruthenicum Murr.) using near-infrared spectroscopy and chemometrics[J].Food Analytical Methods, 2017, 10(4):1 034-1 044.
[4] DELGADO A M, ISSAOUI M, CHAMMEM N.Analysis of main and healthy phenolic compounds in foods[J].Journal of AOAC International, 2019, 102(5):1 356-1 364.
[5] HUANG W, CAI Y, ZHANG Y.Natural phenolic compounds from medicinal herbs and dietary plants:Potential use for cancer prevention[J].Nutrition and Cancer, 2010, 62(1):1-20.
[6] 万娜, 戴国礼.枸杞深加工产业发展趋势的研究[J].食品安全质量检测学报, 2018, 9(20):5 328-5 332.
WAN N, DAI G L.Research on the development trend of deep processing industry of Lycium barbarum[J].Food Safety and Quality Detection Technology, 2018, 9(20):5 328-5 332.
[7] 梁颖, 马蓉, 李亚辉, 等.枸杞酒酿造技术及香气分析研究进展[J].中国酿造, 2019, 38(2):16-20.
LIANG Y, MA R, LI Y H, et al.Research progress in brewing technology and aroma analysis of wolfberry wine[J].China Brewing, 2019, 38(2):16-20.
[8] 马宇, 黄永光.清酱香型白酒挥发性风味组分及香气特征[J].食品科学, 2019, 40(20):241-248.
MA Y, HUANG Y G.Volatile components and aroma characteristics of Fen-Maotai-Flavored liquor[J].Food Science, 2019, 40(20):241-248.
[9] MATHEW S, ABRAHAM T E, SUDHEESH S.Rapid conversion of ferulic acid to 4-vinyl guaiacol and vanillin metabolites by Debaryomyces hansenii[J].Journal of Molecular Catalysis B, Enzymatic, 2006, 44(2):48-52.
[10] 吕海洋, 幸岑璨, 高梦笛, 等.宁夏枸杞多酚Q-TOF/MSE分析及对细胞抗氧化能力的影响[J].核农学报, 2017, 31(2):298-306.
LV H Y, XING C C, GAO M D, et al.Analysis of Ningxia Lycium barbarum polyphenols by Q-TOF/MSE and its effect on cellular antioxidant capacity.[J].Journal of Nuclear Agriculture Sciences, 2017, 31(2):298-306.
[11] INBARAJ B S, LU H, KAO T H, et al.Simultaneous determination of phenolic acids and flavonoids in Lycium barbarum Linnaeus by HPLC-DAD-ESI-MS[J].Journal of Pharmaceutical and Biomedical Analysis, 2010, 51(3):549-556.
[12] FORINO M, TARTAGLIONE L, DELL'AVERSANO C, et al.NMR-based identification of the phenolic profile of fruits of Lycium barbarum (goji berries).Isolation and structural determination of a novel N-feruloyl tyramine dimer as the most abundant antioxidant polyphenol of goji berries[J].Food Chemistry, 2016, 194:1 254-1 259.
[13] ISABEL B, OTTO S, RIITTA T R N, et al.Metabolic profiling of goji berry extracts for discrimination of geographical origin by non-targeted liquid chromatography coupled to quadrupole time-of-flight mass spectrometry[J].Food Research International, 2014, 63:132-138.
[14] RODRIGUES S R, DA C C J, DE ANDRADE S D, et al.Multielementar/centesimal composition and determination of bioactive phenolics in dried fruits and capsules containing Goji berries (Lycium barbarum L.)[J].Food Chemistry, 2019, 273:15-23.
[15] 赵璐.枸杞酒制作中类胡萝卜素降解产物降异戊二烯分析研究[D].银川:宁夏大学, 2018.
ZHAO L.Analysis of isoprene degradation products of carotenoids in wolfberry wine during fermentation process[D].Yinchuan:Ningxia University, 2018.
[16] 马先红, 刘景圣, 李艳红.发芽对粮食酚类化合物及抗氧化活性的影响[J].食品研究与开发, 2015, 36(24):197-200.
MA X H, LIU J S, LI Y H.Effects of germination on the phenolic compounds and antioxidant activity of grain[J].Food Research and Development, 2015, 36(24):197-200.
[17] ADOMA K K, LIU R H.Antioxidant activity of grains[J].Journal of Agricultural and Food Chemistry, 2002, 50(21):6 182-6 187.
[18] WU G, JOHNSON S K, BORNMAN J F, et al.Growth temperature and genotype both play important roles in sorghum grain phenolic composition[J].Scientific Reports, 2016, 6.DOI:10.1038/srep21835.
[19] SHANAKA K A S N, THARUKA M D, SELLATHTHURAI S, et al.Characterization and expression analysis of rockfish (Sebastes schlegelii) myeloid differentiation factor-88 (SsMyD88) and evaluation of its ability to induce inflammatory cytokines through NF-κB[J].Fish and Shellfish Immunology, 2020, 99:59-72.
[20] LU, LI, QUAN, et al.Identification of characteristic aroma volatiles of Ningxia goji berries (Lycium barbarum L.) and their developmental changes[J].International Journal of Food Properties, 2017, 20(1):214-217.
[21] 矫馨瑶, 李恩惠, 王月华, 等.蓝莓多酚稳定性及热降解动力学研究[J].中国食品学报, 2018, 18(1):81-87.
JIAO X Y, LI E H, WANG Y H, et al.Study on stability and thermal degradation kinetics of blueberry polyphenols[J].Journal of Chinese Institute of Food Science and Technology, 2018, 18(1):81-87.
[22] ZHANG L J, CAO Y L, TONG J N, et al.An alkylpyrazine synthesis mechanism involving l-threonine-3-dehydrogenase describes the production of 2, 5-dimethylpyrazine and 2, 3, 5-trimethylpyrazine by Bacillus subtilis[J].Applied and Environmental Microbiology, 2019, 85(24).DOI:10.1128/AEM.01 807-19.
[1] 郭鹏妹, 秦艳, 赵希娟, 焦必宁. 金柑果实主要次生代谢产物含量及差异分析[J]. 食品与发酵工业, 2021, 47(9): 32-41.
[2] 赵雨, 郭建华, 张春枝. 蜡状芽孢杆菌ZY12产磷脂酶D的影响因素[J]. 食品与发酵工业, 2021, 47(9): 57-62.
[3] 王迪, 王智荣, 陈湑慧, 宋军, 孔祥兵, 陈本开, 阚建全. 不同后发酵温度下曲霉型豆豉的氨基酸态氮生成动力学及品质变化研究[J]. 食品与发酵工业, 2021, 47(9): 91-99.
[4] 刘梦, 缪礼鸿, 刘蒲临, 王霜, 高瑞杰. 马克斯克鲁维酵母与酿酒酵母混合发酵对液态法黄酒风味的影响[J]. 食品与发酵工业, 2021, 47(9): 160-167.
[5] 王伟佳, 刘爱国, 廖振宇, 刘立增, 孙丽婷, 杨红, 刘蕊, 刘长旭, 李雨轩. 发酵乳中内源性苯甲酸产生的影响因素[J]. 食品与发酵工业, 2021, 47(9): 168-173.
[6] 黄力, 刘功良, 费永涛, 高苏娟, 白卫东, 刘锐. 微生物航天育种及其在发酵食品微生物中的应用研究概述[J]. 食品与发酵工业, 2021, 47(9): 321-327.
[7] 鲁朝凤, 黄佳琦, 黄勇桦, 杨士花, 陈壁, 杨明静, 李永强. 青稞膳食纤维和多酚对肠道微生物的协同调节作用[J]. 食品与发酵工业, 2021, 47(8): 6-13.
[8] 赵帅东, 刘婷, 季旭, 杨梓璐, 尹轩威, 施文正, 汪立平, 宁喜斌. 利用外源蛋白酶和曲霉菌YL001加速沙丁鱼鱼露的发酵[J]. 食品与发酵工业, 2021, 47(8): 14-20.
[9] 唐富豪, 滕建文, 韦保耀, 黄丽, 夏宁, 覃超. 基于非靶向代谢组学评价传统发酵对客家酸芥菜酚类化合物组成的影响[J]. 食品与发酵工业, 2021, 47(8): 128-133.
[10] 曾玉雪, 罗惠波, 余东, 黄丹, 郭辉祥, 邹永芳. 浓香型大曲中降解生物胺菌株的筛选及应用[J]. 食品与发酵工业, 2021, 47(8): 145-151.
[11] 周慧宁, 张一晟, 张惠玲, 李海峰. 一株可降解马铃薯淀粉汁水中蛋白质菌株筛选与发酵产物分析[J]. 食品与发酵工业, 2021, 47(8): 158-164.
[12] 李丽, 杨云丽, 杨小凡, 何伟, 袁恺, 朱威宇, 彭超, 何一凡, 董银卯, 周卫强. 液体发酵生产灵芝三萜酸的过程调控研究进展[J]. 食品与发酵工业, 2021, 47(8): 304-312.
[13] 刘景阳, 刘云鹏, 徐庆阳. 谷氨酸全营养流加发酵新工艺[J]. 食品与发酵工业, 2021, 47(7): 14-20.
[14] 高宇豪, 吴勇杰, 朱亚鑫, 付静, 徐建国, 王松涛, 徐国强, 张晓梅, 史劲松, 许正宏. 产谷胱甘肽毕赤酵母工程菌的构建及能量调控[J]. 食品与发酵工业, 2021, 47(7): 21-26.
[15] 邓祥宜, 李继伟, 何立超, 张原源, 黄国威, 鲍晓龙, 邱朝坤. 宣恩火腿发酵过程中表面微生物群落演替规律[J]. 食品与发酵工业, 2021, 47(7): 34-42.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn