Please wait a minute...
食品与发酵工业  2021, Vol. 47 Issue (16): 308-312    DOI: 10.13995/j.cnki.11-1802/ts.026094
  综述与专题评论 本期目录 | 过刊浏览 | 高级检索 |
马巍, 邹祥*
(西南大学 药学院,重庆,400715)
Research progress on the production of L-fucose by fermentation
MA Wei, ZOU Xiang*
(College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China)
下载:  HTML  PDF (1600KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 L-岩藻糖(L-fucose)是一种具有免疫调节、抗感染、抗肿瘤等多种重要生理功能的稀有单糖。L-岩藻糖的生产方法主要有植物提取法、化学合成法和微生物发酵法,微生物发酵法具有生产周期短、产量高等优点,通过富含岩藻糖的胞外多糖生产L-岩藻糖是一种有效的方式。该文就发酵法生产L-岩藻糖的发酵工艺、代谢工程改造以及提取工艺等方面进行综述,并对未来发展方向提出展望。
E-mail Alert
关键词:  L-岩藻糖  菌种选育  发酵优化  代谢工程  分离纯化    
Abstract: L-Fucose is a rare monosaccharide with many important physiological functions, such as immune regulation, anti-infection and anti-tumor. The production of L-fucose mainly include plant extraction, chemical synthesis, and microbial fermentation, in which microbial fermentation has some advantages including effective productivity, high yield, and environmentally friendly. The hydrolysis of L-fucose from fucose-rich extracellular polysaccharide was an alternative process for L-fucose production. In this review, the fermentation process, metabolic engineering and extraction process of L-fucose produced by fermentation methods are discussed.
Key words:  L-fucose    breeding of strains    optimization of fermentation    metabolic engineering    separation and purification
收稿日期:  2020-11-05      修回日期:  2020-12-22                发布日期:  2021-09-10      期的出版日期:  2021-08-25
作者简介:  硕士研究生(邹祥教授为通讯作者,E-mail:
马巍,邹祥. 发酵法生产L-岩藻糖的研究进展[J]. 食品与发酵工业, 2021, 47(16): 308-312.
MA Wei,ZOU Xiang. Research progress on the production of L-fucose by fermentation[J]. Food and Fermentation Industries, 2021, 47(16): 308-312.
链接本文:  或
[1] 王永胜, 王硕, 张慧林, 等.L-岩藻糖对母乳寡糖(HMOs)合成的意义及其产业化研究进展[J].中国农学通报, 2019, 35(11):127-132.
WANG Y S, WANG S, ZHANG H L, et al.L-Fucose:The significance to synthesis of human milk oligosaccharides (HMOs) and its research progress of industrialization[J].Chinese Agricultural Science Bulletin, 2019, 35(11):127-132.
[2] 吴巍, 孙敬, 冯士超.HPLC-ELSD测定岩藻聚糖硫酸酯中L(-)岩藻糖[J].食品研究与开发, 2013, 34(21):90-92.
WU W, SUN J, FENG S C.Determination of L-fucose in fucoidan extract by HPLC-ELSD[J].Food Research and Development, 2013, 34(21):90-92.
[3] LISTINSKY J J, SIEGAL G P, LISTINSKY C M.The emerging importance of α-L-fucose in human breast cancer:A review[J].American Journal of Translational Research, 2011, 3(4):292-322.
[4] LISTINSKY J J, LISTINSKY C M, Alapati V, et al.Cell surface fucose ablation as a therapeutic strategy for malignant neoplasms[J].Anatomic Pathology, 2001, 8(6):330-337.
[5] SHETTY R K S, BHANDARY S K, KALI A.Significance of serum L-fucose glycoprotein as cancer biomarker in head and neck malignancies without distant metastasis[J].Journal of Clinical and Diagnostic Research, 2013, 7(12):2 818-2 820.
[6] KATO J, TAKIMOTO R, OSUGA T,et al.Targeting SN38 delivery to gastrointestinal cancer cells using a fucose-bound nanoparticle approach[C].Proceedings of the 105th Annual Meeting of the American Association for Cancer Research,San Diego:Cancer Research, 2014.
[7] YOSHIDA M, TAKIMOTO R, MURASE K, et al.Targeting anticancer drug delivery to pancreatic cancer cells using a fucose-bound nanoparticle approach[J].PLoS One, 2012, 7(7):e39 545.
[8] FODIL B I, BIZBIZ L, SCHOEVAERT D, et al.Effect of L-fucose and fucose-rich oligo- and polysaccharides (FROP-s) on skin aging:Penetration, skin tissue production and fibrillogenesis[J].Biomed Pharmacother, 2003, 57(5):209-215.
[9] WIJESINGHE W, JEON Y J.Biological activities and potential industrial applications of fucose rich sulfated polysaccharides and fucoidans isolated from brown seaweeds:A review[J].Carbohydrate Polymers, 2012, 88(1):13-20.
[10] 余华. 海带多糖提取条件的优化和脱蛋白研究[J].中国食品添加剂, 2006(3):39-43.
YU H.Study on the extracting condition and deproteinization of laminaria japonica aresch polysaccharide[J].China Food Additives, 2006(3):39-43.
[11] VANHOOREN P T,VANDAMME E J.L-Fucose:Occurrence,physiological role,chemical,enzymatic and microbial synthesis[J].Cheminform, 1999, 30(33):479-497.
[12] 黄宜兰, 王岩, 陈少欣.L-岩藻糖的生产菌种选育及发酵工艺优化[J].中国医药工业杂志, 2015, 46(8):823-826.
HUANG Y L, WANG Y, CHEN S X.Strain screening and fermentation production of L-fucose by Enterobacter sp.[J].Chinese Journal of Pharmaceuticals, 2015, 46(8):823-826.
[13] FREITAS F,ALVES V D,GOUVEIA A R, et al.Controlled production of exopolysaccharides from Enterobacter A47 as a function of carbon source with demonstration of their film and emulsifying abilities[J].Applied Biochemistry & Biotechnology, 2014, 172(2):641-657.
[14] ALVES V D, FREITAS F,TORRES C A V, et al.Rheological and morphological characterization of the culture broth during exopolysaccharide production by Enterobacter sp.[J].Carbohydrate Polymers, 2010, 81(4):758-764.
[15] TORRES C A V,MARQUES R, ANTUNES S, et al.Kinetics of production and characterization of the fucose-containing exopolysaccharide from Enterobacter A47[J].Journal of Biotechnology, 2011, 156(4):261-267.
[16] TORRES C A V, ANTUNES S,RICARDO A R, et al.Study of the interactive effect of temperature and pH on exopolysaccharide production by Enterobacter A47 using multivariate statistical analysis[J].Bioresource Technology, 2012, 119:148-156.
[17] TORRES C A V, MARQUES R,FERREIRA A R V, et al.Impact of glycerol and nitrogen concentration on Enterobacter A47 growth and exopolysaccharide production[J].International Journal of Biological Macromolecules, 2014, 71:81-86.
[18] ANTUNES S,FREITAS F,ALVES V D, et al.Conversion of cheese whey into a fucose-and glucuronic acid-rich extracellular polysaccharide by Enterobacter A47[J].Journal of Biotechnology, 2015, 210:1-7.
[19] ANTUNES S,FREITAS F,SEVRIN C, et al.Production of fucopol by Enterobacter A47 using waste tomato paste by-product as sole carbon source[J].Bioresource Technology, 2017, 227:66-73.
[20] NIU S F, MA W, JIN M Y, et al.Complete genome sequence of Kosakonia sp.strain CCTCC M2018092, a fucose-rich exopolysaccharide producer[J].Microbiology Resource Announcements, 2019, 8(30).DOI:10.1128/MAR.00567-19.
[21] VLAEV S D, STAYKOV P, POPOV R.Pressure distribution at impeller blades of some radial flow impellers in saccharose and xanthan gum solutions-A CFD visualization approach[J].Food and Bioproducts Processing, 2004, 82(C1):13-20.
[22] HUANG J, JIANG S, XU X Q, et al.Effects of carbon/nitrogen ratio, dissolved oxygen and impeller type on gellan gum production in Sphingomonas paucimobilis [J].Ann Microbiol, 2012, 62(1):299-305.
[23] 曾真,彭坤,王为国.发酵罐搅拌轴的优化设计[J].食品与机械, 2010, 26(6):97-100.
ZENG Z, PENG K, WANG W G.Optimum design of the agitating shaft for the fermentation tank[J].Food & Machinery, 2010, 20(6):97-100.
[24] HARWEY P S, GREAVES M.Turbulent flow in an agitated vessel.part I:A predictive model[J].Transactions of the Institution Chemical Engineer, 1982, 60:195-200.
[25] OLDSHUE J Y.Fluid mixing in fermentation processes[J].Industrial & Engineering Chemistry Research, 1960, 2:275-287.
[26] ZHAO H B, FEI X N, ZHANG B L, et al.Controlling the size of fragrance microcapsules using designed agitator paddles:Experiment and CFD simulation[J].Particuology, 2019, 43:38-45.
[27] 张淑华, 李涛, 朱炳辰, 等.三相机械搅拌反应器气液传质[J].化工学报, 2005, 56(2):220-226.
ZHANG S H, LI T, ZHU B C, et al.Gas-liquid mass transfer in three-phase mechanical agitated reactor[J].CIESC Journal, 2005, 56(2):220-226.
[28] 袁海荣, 贾绍义.搅拌桨形式对盐酸四环素发酵的影响[J].西北药学杂志, 2005, 20(6):255-257.
YUAN H R, JIA S Y.The effect of stirring blade on the fermentation of tetracycline hydrochloride[J].Northwest Pharmaceutical Journal, 2005, 20(6):255-257.
[29] 郑之明, 杨守志, 樊永红, 等.黄原胶发酵过程中流变学行为和气液传质的研究[J].天然气化工, 2006(5):27-31.
ZHENG Z M, YANG S Z, FAN Y H, et al.Studies on fluid rheological properties and mass transfer during the fermentation of xanthomonas campestris in a stired reactor[J].Natural Gas Chemical Industry, 2006(5):27-31.
[30] HALFI E, ARAD A, BRENNER A, et al.Development of an oscillation-based technology for the removal of colloidal particles from water:CFD modeling and experiments[J].Engineering Applications of Computational Fluid Mechanics, 2020, 14(1):622-641.
[31] YAO M, RAN Z, CHEN T, et al.Numerical simulation studies of agitating paddle dependence on characteristics of the flow field in the mechanical-L-continuous-flow-stirred reactor for flocculation[J].Desalination and Water Treatment, 2020, 183:30-41.
[32] SCHMID J, SIEBER V, REHM B.Bacterial exopolysaccharides:Biosynthesis pathways and engineering strategies[J].Frontiers in Microbiology, 2015, 6:496.
[33] YI W, LIU X W, LI Y H, et al.Remodeling bacterial polysaccharides by metabolic pathway engineering[J].Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(11):4 207-4 212.
[34] BYUN S G, KIM M D, LEE W H, et al.Production of GDP-L-fucose, L-fucose donor for fucosyloligosaccharide synthesis, in recombinant Escherichia coli[J].Applied Microbiology Biotechnology, 2007, 74(4):768-775.
[35] LEE W H, HAN N S, PARK Y C, et al.Modulation of guanosine 5′-diphosphate-D-mannose metabolism in recombinant Escherichia coli for production of guanosine 5′-diphosphate-L-fucose[J].Bioresource Technology, 2009, 100(24):6 143-6 148.
[36] LEE W H, CHIN Y W, HAN N S, et al.Enhanced production of GDP-L-fucose by overexpression of NADPH regenerator in recombinant Escherichia coli[J].Applied Microbiology and Biotechnology, 2011, 91:967-976.
[37] HUANG D, YANG K X, LIU J, et al.Metabolic engineering of Escherichia coli for the production of 2′-fucosyllactose and 3-fucosyllactose through modular pathway enhancement[J].Metabolic Engineering, 2017, 41:23-38.
[38] MATTILA P, RABINA J, HORTLING S, et al.Functional expression of Escherichia coli enzymes synthesizing GDP-L-fucose from inherent GDP-D-mannose in Saccharomyces cerevisiae[J].Glycobiology, 2000, 10(10):1 041-1 047.
[39] CHIN Y W, PARK J B, PARK Y C, et al.Metabolic engineering of Corynebacterium glutamicum to produce GDP-L-fucose from glucose and mannose[J].Bioprocess and Biosystems Engineering, 2013, 36(6):749-756.
[40] KOIZUMI S, ENDO T, TABATA K, et al.Large-scale production of GDP-fucose and Lewis X by bacterial coupling[J].Journal of Industrial Microbiology & Biotechnology, 2000, 25(4):213-217.
[41] LI L, KIM S A, HEO J E, et al.One-pot synthesis of GDP-L-fucose by a four-enzyme cascade expressed in Lactococcus lactis[J].Journal of Biotechnology, 2017, 264:1-7.
[42] LIU J J, LEE J W, YUN E J, et al.L-Fucose production by engineered Escherichia coli[J].Biotechnology and Bioengineering, 2019, 116(4):904-911.
[43] 程仕伟,陈超男,冯志彬,等.海带岩藻多糖的水提制备及其抗氧化活性研究[J].食品科学, 2010, 31(6):101-104.
CHENG S W, CHEN C N, FENG Z B, et al.Water extraction and antioxidant activity of fucoidan from Laminaria japonica[J].Food Science, 2010, 31(6):101-104.
[44] GORI A, BIAGIOLINI S, MANONI M, et al.Process for production of L-fucose:WO/2012/034996A1[P].2012-03-22.
[45] LI S S, XIA H Q, XIE A Q, et al.Structure of a fucose-rich polysaccharide derived from EPS produced by Kosakonia sp.CCTCC M2018092 and its application in antibacterial film[J].International Journal of Biological Macromolecules, 2020, 159:295-303.
[46] HE R H, LI Y, HAN C Q, et al.L-fucose ameliorates DSS-induced acute colitis via inhibiting macrophage M1 polarization and inhibiting NLRP3 inflammasome and NF-κB activation[J].International Immunopharmacology, 2019, 73:379-388.
[47] WIERICHS R J, ZELCK H, DOERFER C E, et al.Effects of dentifrices differing in fluoride compounds on artificial enamel caries lesions in vitro[J].Odontology, 2017, 105(1):36-45.
[48] DONALDSON G P, LADINSKY M S, YU K B, et al.Gut microbiota utilize immunoglobulin A for mucosal colonization[J].Science, 2018, 360(6 390):795-800.
[1] 彭燕鸿, 苏爱秋, 黄伟文, 蓝素桂, 杨天云, 谭强. 微生物嗜热脂肪酶研究进展[J]. 食品与发酵工业, 2021, 47(6): 289-294.
[2] 史巧, 刘毕琴, 汤回花, 王馨蕊, 朱力舟, 赵楠, 李宏. 发酵蔬菜菌种应用及菌群调控研究进展[J]. 食品与发酵工业, 2021, 47(5): 273-281.
[3] 李晨晨, 李梦丽, 江波, 张涛. 2'-岩藻糖基乳糖的生物合成菌株构建及发酵条件研究[J]. 食品与发酵工业, 2021, 47(3): 10-17.
[4] 胡冠华, 王德宝, 苏琳, 赵丽华, 田建军, 张忠海, 朱浩田, 靳烨. 食源性钙螯合肽的研究概况[J]. 食品与发酵工业, 2021, 47(3): 224-229.
[5] 刘慧, 陈胜玲, 徐建中, 张伟国. α-法尼烯在巴斯德毕赤酵母中的生物合成[J]. 食品与发酵工业, 2021, 47(16): 9-14.
[6] 程青丽, 李国明, 赵晓涵, 冯晓文, 卢知浩, 谷瑞增, 鲁军, 刘文颖. 牡蛎过敏原肌浆钙结合蛋白的分离纯化和鉴定[J]. 食品与发酵工业, 2021, 47(16): 15-21.
[7] 周洋, 杨得坡, 钱纯果, 何翠淇, 钟镜堂, 徐新军, 赵志敏. 阳春砂根茎多糖分离纯化、结构表征及抗氧化活性[J]. 食品与发酵工业, 2021, 47(16): 52-58.
[8] 朱灵桓, 徐沙, 李由然, 张梁, 石贵阳. 微生物法从头合成2-苯乙醇的研究进展[J]. 食品与发酵工业, 2021, 47(16): 271-277.
[9] 李梦莹, 吕雪芹, 刘延峰, 李江华, 堵国成, 吴剑荣, 刘龙. 代谢工程改造大肠杆菌合成L-组氨酸[J]. 食品与发酵工业, 2021, 47(12): 1-9.
[10] 刘益宁, 秦臻, 李旋, 蒋帅, 吴鹤云, 谢希贤. 胞苷合成途径改造对大肠杆菌嘧啶核苷发酵的影响[J]. 食品与发酵工业, 2021, 47(12): 10-16.
[11] 段晓莉, 江波, 张涛. 产阿魏酸酯酶菌株的筛选与产酶条件优化[J]. 食品与发酵工业, 2021, 47(12): 154-160.
[12] 李洁媛, 李东, 童凯, 雷雨, 姜斌, 唐璇, 李亚兰. 马铃薯多酚氧化酶的分离纯化、酶学性质及酶促合成茶黄素性能研究[J]. 食品与发酵工业, 2021, 47(11): 26-31.
[13] 庞远祥, 谢远红, 金君华, 刘慧, 张红星. 低嘌呤、高纳豆激酶活性枯草芽孢杆菌SH21筛选及发酵条件优化[J]. 食品与发酵工业, 2021, 47(11): 194-199.
[14] 桑昆昆, 刘晓凤, 熊智强, 张汇, 王光强, 宋馨, 艾连中, 夏永军. 透明质酸分子质量调控进展[J]. 食品与发酵工业, 2021, 47(11): 272-278.
[15] 楼志华, 刘翔, 张劲楠. 嗜糖假单胞菌麦芽四糖酶基因在地衣芽孢杆菌中的异源表达[J]. 食品与发酵工业, 2021, 47(1): 50-54.
No Suggested Reading articles found!
Full text



版权所有 © 《食品与发酵工业》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持