Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (15): 90-97    DOI: 10.13995/j.cnki.11-1802/ts.026115
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
蒲公英根不同多糖组分的降血糖作用及调控途径研究
吴亚楠, 邹辉, 刘玉茜, 陈义伦*
(山东农业大学 食品科学与工程学院,山东 泰安,271000)
Hypoglycemic effect and regulatory pathway of different polysaccharide components from dandelion root
WU Yanan, ZOU Hui, LIU Yuqian, CHEN Yilun*
(College of Food Science and Engineering,Shandong Agricultural University,Taian 271000,China)
下载:  HTML  PDF (6924KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以蒲公英根粗多糖(dandelion root polysaccharide,DP)经乙醇分级沉淀层析洗脱后制得DP1、DP2、DP3这3种组分为材料,利用细胞和动物实验,探究蒲公英根多糖的降血糖活性,确定活性多糖组分,并初步分析了其单糖组成及降糖途径。其中DP2 显示出最好的降血糖效果。3种多糖均能提高糖尿病小鼠的葡萄糖耐受力,且DP2的改善效果最佳。多糖干预组中甘油三酯、总胆固醇和低密度脂蛋白胆固醇含量与模型组相比显著降低,高密度脂蛋白胆固醇含量明显升高,说明3种组分均可以改善血脂异常。此外,3种蒲公英根多糖对肝脏具有一定的保护作用。对于2型糖尿病模型小鼠,DP1的肝糖原含量最多,对于人肝癌细胞胰岛素抵抗模型,DP2葡萄糖消耗量最多,DP3对小鼠胰岛素瘤β细胞胰岛损伤模型的保护作用最佳。最后可推测3种蒲公英根多糖的分子结构的差异,使其通过调控不同的降糖途径而具有不同的降血糖效果。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴亚楠
邹辉
刘玉茜
陈义伦
关键词:  蒲公英  纯化  多糖  降血糖  作用途径    
Abstract: DP1, DP2 and DP3 were prepared from crude polysaccharide by ethanol fractional precipitation chromatography. The hypoglycemic activity of polysaccharides from dandelion root was studied by cell and animal experiments. The results showed that DP2 had the best hypoglycemic effect. All the three polysaccharides could improve the glucose tolerance of diabetic mice, and DP2 had the best effect. Compared with the model group, the contents of TC, TG and LDL-C in the polysaccharide intervention group were significantly decreased, while the content of HDL-C was significantly increased which indicating that the three components had benefit on dyslipidemia. In addition, dandelion root polysaccharide had a certain protective effect on the liver. The liver glycogen content of DP1 was the highest in type 2 diabetic mice and the glucose consumption of DP2 was the highest in HepG2 insulin resistance model. While, DP3 showed obvious protective effect on damaged islet cells. Based on these results, it could speculate that the molecular structure of the three kinds of dandelion root polysaccharides was different, which makes them have different hypoglycemic effects.
Key words:  dandelion    purification    polysaccharide    hypoglycemic    regulatory pathway
收稿日期:  2020-11-08      修回日期:  2020-12-09           出版日期:  2021-08-15      发布日期:  2021-08-23      期的出版日期:  2021-08-15
基金资助: 山东省农业重大应用技术创新项目(2130106)
作者简介:  硕士研究生(陈义伦教授为通讯作者,E-mail:cylun@sdau.edu.cn)
引用本文:    
吴亚楠,邹辉,刘玉茜,等. 蒲公英根不同多糖组分的降血糖作用及调控途径研究[J]. 食品与发酵工业, 2021, 47(15): 90-97.
WU Yanan,ZOU Hui,LIU Yuqian,et al. Hypoglycemic effect and regulatory pathway of different polysaccharide components from dandelion root[J]. Food and Fermentation Industries, 2021, 47(15): 90-97.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.026115  或          http://sf1970.cnif.cn/CN/Y2021/V47/I15/90
[1] SEURING T,ARCHANGELIDI O,SUHRCKE M.The economic costs of type 2 diabetes:A global systematic review[J].Pharmaco Economics,2015,33(8):811-831.
[2] ZHOU B,LU Y,HAJIFATHALIAN K,et al.Worldwide trends in diabetes since 1980:A pooled analysis of 751 population-based studies with 4.4 million participants[J].The Lancet,2016,387(10 027):1 513-1 530.
[3] CHATTERJEE S,KHUNTI K,DAVIES M J.Type 2 diabetes[J].The Lancet,2017,389(10 085):2 239-2 251.
[4] KUMAR R,KERINS D M,WALTHER T.Cardiovascular safety of anti-diabetic drugs[J].European Heart Journal-Cardiovascular Pharmacotherapy,2015,2(1):32-43.
[5] WU J,SHI S,WANG H,et al.Mechanisms underlying the effect of polysaccharides in the treatment of type 2 diabetes:A review[J].Carbohydrate polymers,2016,144:474-494.
[6] XU L,LI Y,DAI Y,et al.Natural products for the treatment of type 2 diabetes mellitus:Pharmacology and mechanisms[J].Pharmacological Research,2018,130:451-465.
[7] GANESAN K,XU B J.Anti-diabetic effects and mechanisms of dietary polysaccharides[J].Molecules,2019,24(14):2 556.
[8] 相峰. 蒲公英有效成分的提取及产品开发[D].石河子:石河子大学,2020.XIANG F.Extraction of active ingredients from Taraxacum mongolicum and product development[D].Shihezi:Shihezi University,2020.
[9] 郭慧静. 蒲公英多糖的提取、分离纯化、鉴定及其生物活性的初步研究[D].石河子:石河子大学,2019.GUO H J.Extraction,isolation,purification,characterization and its biological activity of polysaccharide from Taraxacum mongolicum[D].Shihezi:Shihezi University,2019.
[10] GUO H J,ZHANG W D,JIANG Y,et al.Physicochemical,structural,and biological properties of polysaccharides from dandelion[J].Molecules (Basel,Switzerland),2019,24(8):1 485.
[11] CHEN C,ZHANG B,FU X,et al.A novel polysaccharide isolated from mulberry fruits (Murus alba L.) and its selenide derivative:Structural characterization and biological activities[J].Food & Function,2016,7(6):2 886-2 897.
[12] CHEN C,YOU L,ABBASI A M,et al.Characterization of polysaccharide fractions in mulberry fruit and assessment of their antioxidant and hypoglycemic activities in vitro[J].Food & Function,2016,7(1):530-539.
[13] ZHANG Q,YU H,XIAO X,et al.Inulin-type fructan improves diabetic phenotype and gut microbiota profiles in rats[J].PeerJ,2018,6:e4 446.
[14] 侯丽然, 孙丽娜,侯巍,等.蒲公英多糖的提取及降糖作用的研究[J].黑龙江医药科学,2010,33(6):36-37.HOU L R,SUN L N,HOU W,et al.Extraction and hypoglycemic function of dandelion polysaccharide[J].Heilongjiang Medicine Journal,2010,33(6):36-37.
[15] 吴兰芳, 景永帅,张振东,等.土党参多糖不同提取方法的比较研究[J].食品科学,2012,33(18):45-48.WU L F,JING Y S,ZHANG Z D,et al.A comparative study of different extraction methods for polysaccharides from campanumoea javanica roots[J].Food Science,2012,33(18):45-48.
[16] SHI S,ZHANG Y,HUANG K,et al.Application of preparative high-speed counter-current chromatography for separation and purification of lignans from Taraxacum mongolicum[J].Food Chemistry,2008,108(1):402-406.
[17] HU H B,LIANG H,WU Y.Isolation,purification and structural characterization of polysaccharide from acanthopanax brachypus[J].Carbohydrate Polymers,2015,127:94-100.
[18] XU J,XU L L,ZHOU Q W,et al.Isolation,purification,and antioxidant activities of degraded polysaccharides from enteromorpha prolifera[J].International Journal of Biological Macromolecules,2015,81:1 026-1 030.
[19] JIAO Y,WANG X,JIANG X,et al.Antidiabetic effects of morus alba fruit polysaccharides on high-fat diet-and streptozotocin-induced type 2 diabetes in rats[J].Journal of Ethnopharmacology,2017,199:119-127.
[20] 吴秀密. 南非叶对2型糖尿病的降血糖作用及肝糖异生信号转导通路调控[D].厦门:厦门大学,2018.WU X M.Hypoglycemic effect of Vernonia amygdalina on type 2 diabetic mellitus and regulation of hepatic gluconeogenesis[D].Xiamen:Xiamen University,2018.
[21] DU X X,TAO X,LIANG S,et al.Hypoglycemic effect of acidic polysaccharide from schisandra chinensis on T2D rats induced by high-fat diet combined with STZ[J].Biological and Pharmaceutical Bulletin,2019,42(8):1 275-1 281.
[22] 曲鹏宇. 鲜食水稻SDF理化性质、单糖组成及对胰岛素抵抗HepG2细胞改善作用研究[D].密山:黑龙江八一农垦大学,2019.QU P Y.Physicochemical properties,monosaccharide composition and improvement of insulin resistance HepG2 cellsin fresh rice SDF[D].Mishan:Heihngjiang Bayi Agricultural University,2019.
[23] 尹健兰. 厄贝沙坦对胞内胞外氧化应激引起胰岛NIT-1细胞损伤的研究[D].南宁:广西医科大学,2015.YIN J L.The study of irbesartan on the damage islet cell caused by oxidative stress[D].Nanning:Guangxi Medical University,2015.
[24] PAN Y,WANG C,CHEN Z,et al.Physicochemical properties and antidiabetic effects of a polysaccharide from corn silk in high-fat diet and streptozotocin-induced diabetic mice[J].Carbohydrate Polymers,2017,164:370-378.
[25] CHUNG I M,KIM E H,YEO M A,et al.Antidiabetic effects of three Korean sorghum phenolic extracts in normal and streptozotocin-induced diabetic rats[J].Food Research International,2011,44(1):127-132.
[26] HEEBA G H,HAMZA A A.Rosuvastatin ameliorates diabetes-induced reproductive damage via suppression of oxidative stress,inflammatory and apoptotic pathways in male rats[J].Life Sciences,2015,141:13-19.
[27] FATANI A J,ALREJAIE S S,ABUOHASHISH H M,et al.Lutein dietary supplementation attenuates streptozotocin-induced testicular damage and oxidative stress in diabetic rats[J].BMC Complementary and Alternative Medicine,2015,15(1):204-204.
[28] LIAO Z,ZHANG J,LIU B,et al.Polysaccharide from okra (Abelmoschus esculentus (L.) Moench) improves antioxidant capacity via PI3K/AKT pathways and Nrf2 translocation in a type 2 diabetes model[J].Molecules,2019,24(10):1 906.
[29] 董文南, 李克招,张文婷,等.多糖降血糖作用及其机制研究进展[J].中国实验方剂学杂志,2019,25(19):219-225.DONG W N,Li K Z,ZHANG W T,et al.Progress in hypoglycemic effect and mechanism of polysaccharides[J].Chinese Journal of Experimental Traditional Medical Formulae,2019,25(19):219-225.
[30] GONZáLEZ-CASTEJóN M,VISIOLI F,RODRIGUEZ-CASADO A.Diverse biological activities of dandelion[J].Nutrition Reviews,2012,70(9):534-547.
[1] 符群, 郐滨, 钟明旭, 吴小杰. 超声波辅助酶解法提取北虫草菌素及其降血糖活性研究[J]. 食品与发酵工业, 2021, 47(9): 120-127.
[2] 蔡燕, 田丹, 严鑫, 李百裕, 李宇杰, 于丽娟, 吴锦明. 一步法快速从脱脂豆粉中三相分离脂肪氧合酶[J]. 食品与发酵工业, 2021, 47(9): 149-153.
[3] 史瑛, 冯欣静, 周志磊, 姬中伟, 徐岳正, 毛健. 黄酒多糖对炎症性肠病及便秘作用机制的研究进展[J]. 食品与发酵工业, 2021, 47(9): 275-283.
[4] 刘志芳, 赵前程, 刘志东, 段蕊, 林娜, 张俊杰. 贝类多糖研究进展[J]. 食品与发酵工业, 2021, 47(9): 299-306.
[5] 孟洋, 卢红梅, 杨双全, 章之柱, 陈莉, 刘兵, 王利萍. 铁皮石斛复配花茶制作工艺及其功能性研究[J]. 食品与发酵工业, 2021, 47(8): 170-179.
[6] 周雯, 庄蕾, 吴森. 植物多糖在Ⅱ型糖尿病降血糖作用方面的研究进展[J]. 食品与发酵工业, 2021, 47(8): 290-296.
[7] 姚丽文, 周宇芳, 孙继鹏, 王家星, 廖妙飞, 郑斌, 王芮, 邓尚贵, 相兴伟. 厚壳贻贝多糖对葡聚糖硫酸钠诱导的结肠炎改善作用[J]. 食品与发酵工业, 2021, 47(7): 109-115.
[8] 顾欣, 高涛, 刘梦雅, 丛之慧, 张诚雅, 肖乐艳, 李迪, 胡景涛. 梁平柚柚皮多糖的提取、结构解析及抗氧化能力研究[J]. 食品与发酵工业, 2021, 47(7): 137-145.
[9] 刘婷, 周欣, 赵超, 龚小见, 陈华国. 植物多糖对肾损伤干预效果及作用机制研究进展[J]. 食品与发酵工业, 2021, 47(7): 269-277.
[10] 张晓晓, 柴智, 冯进, 崔莉, 李春阳, 李莹, 黄午阳. 牛蒡多糖的提取及生物活性研究进展[J]. 食品与发酵工业, 2021, 47(6): 280-288.
[11] 彭燕鸿, 苏爱秋, 黄伟文, 蓝素桂, 杨天云, 谭强. 微生物嗜热脂肪酶研究进展[J]. 食品与发酵工业, 2021, 47(6): 289-294.
[12] 李梦钰, 刘会平, 贾琦, 吴亚茹. 天冬多糖理化性质和流变学特性研究[J]. 食品与发酵工业, 2021, 47(5): 48-56.
[13] 吴唯娜, 冯洁茹, 方静宇, 邵平, 孙培龙, 徐靖, 李振皓. 铁皮石斛酶解多糖对姜黄素乳液功能性质的影响[J]. 食品与发酵工业, 2021, 47(5): 63-70.
[14] 杨燕敏, 郑振佳, 高琳, 张砚垒, 张仁堂. 红枣多糖超声波提取、结构表征及抗氧化活性评价[J]. 食品与发酵工业, 2021, 47(5): 120-126.
[15] 殷娴, 邵蕾娜, 廖永红, 王凤寰. 微生物富集有机硒研究进展[J]. 食品与发酵工业, 2021, 47(5): 259-266.
[1] LI Sheng et al. Effects of three improvers on the quality of dried noodles with high content of purple sweet potato flour[J]. Food and Fermentation Industries, 2017, 43(11): 146 .
[2] WU Peng et al. The development of microwave cooked carrot chips based on domestic microwave oven[J]. Food and Fermentation Industries, 2017, 43(11): 180 .
[3] ZHANG Li-hua et al. Recent advance sin comprehensive utilization of grain stillage[J]. Food and Fermentation Industries, 2017, 43(11): 250 .
[4] ZHANG Xue-qin et al.. Optimization of preparation of flavor based on material by microbial composite fermentation of Antarctic krill[J]. Food and Fermentation Industries, 0, (): 1 .
[5] . Effect of Protein on Quality of Chinese Rice Wine #br# [J]. Food and Fermentation Industries, 0, (): 1 .
[6] . Research Advance in the Extraction and Application of Egg Yolk Lecithin [J]. Food and Fermentation Industries, 2002, 28(5): 50 .
[7] . [J]. Food and Fermentation Industries, 2002, 28(6): 76 .
[8] Cai Bangxiao. The Treatment and Reuse of the Wastewater in Food Industry by Means of Membrane Technologies[J]. Food and Fermentation Industries, 2005, 31(10): 102 .
[9] . [J]. Food and Fermentation Industries, 2005, 31(11): 93 .
[10] JIANG Liu,FAN Wen-lai,XU Yan. Carbohydrates and glucosides from fermented grains during mechanical and traditional production in Chinese roasted-sesame-like aroma type liquor[J]. Food and Fermentation Industries, 2017, 43(9): 184 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn