Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (15): 29-35    DOI: 10.13995/j.cnki.11-1802/ts.026144
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
单齿螺肠道产褐藻胶裂解酶菌株的筛选、鉴别及酶学性质分析
刘耀天1,2, 席茂盛1,2, 赵阳1,2, 李月婵1,2, 罗学刚1,2*
1(天津科技大学 生物工程学院,天津,300457)
2(工业发酵微生物教育部重点实验室暨天津市工业微生物重点实验室(天津科技大学),天津,300457)
Screening,identification and enzyme characteristics of alginate lyase-producing strains from the gut of Monodonta labio
LIU Yaotian1,2, XI Maosheng1,2, ZHAO Yang1,2, LI Yuechan1,2, LUO Xuegang1,2*
1(College of Bioengineering,Tianjin University of Science and Technology,Tianjin 300457,China)
2(Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education,Tianjin University of Science and Technology,Tianjin 300457,China)
下载:  HTML  PDF (2905KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以海藻酸钠为唯一碳源,从中国南北潮间带的单齿螺肠道中筛选得到1株高产褐藻胶裂解酶菌株ML17,经菌株形态特征分析和16S rRNA初步鉴定为Vibrio sp.ML17(菌种保藏编号:CGMCC No.20377)。通过我妻氏血琼脂平板分析,该菌株没有溶血性,表明其安全性较好。通过单因素试验确定该菌株在海藻酸钠(5 g/L)、胰蛋白胨(5 g/L)、NaCl(30 g/L)、pH 7~8、30 ℃的条件生长最快,同时相比于其他已报道的产褐藻胶裂解酶菌株,Vibrio sp.ML17在最适生长条件下10 h即可达到生长平台期,14 h达到最高产酶量,生长速度快、周期短的特点有利于其后续工业应用。此外,酶学性质分析结果证明,其所产褐藻胶裂解酶酶活力为26.31 U/mL;该粗酶的最适温度为40 ℃,在40和45 ℃具有一定的热稳定性;最适pH值为7.5;在5 mmol/L Na+和Ca2+的条件下,对酶活力有明显促进作用,Fe2+、Cu2+、Zn2+则有明显抑制作用。进一步的应用实验发现,Vibrio sp.ML17能够有效降解褐藻,在对海带和马尾藻处理72 h后,其降解率可分别达到44.0%和38.9%。鉴于Vibrio sp.ML17生长速度快且产酶性能好的特点,该菌株可望在褐藻寡糖的制备和水产养殖中的褐藻防治去除等领域发挥潜力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘耀天
席茂盛
赵阳
李月婵
罗学刚
关键词:  单齿螺  肠道  弧菌属  海藻酸钠  褐藻胶裂解酶    
Abstract: High-yield alginate lyase producing strain ML17 was screened from the intestinal tract of Monodonta labio in the North-South intertidal zone of China by sodium alginate as the sole carbon source. The strain was identified as Vibrio sp. ML17 (CGMCC NO. 20377) by morphological analysis and 16S rRNA. The results of Wagstsuma blood agar plate analysis showed that ML17 was non-hemolytic. Single factor results showed that ML17 optimal conditions as follows: sodium alginate of 5 g/L, tryptone of 5 g/L, NaCl of 30 g/L, pH 7-8 and 30 ℃. Vibrio sp. ML17 reached the growth plateau after 10 h under the optimal conditions, and the highest enzyme production was achieved after 14 h. In addition, the activity of alginate lyase was 26.31 U/mL. The optimal temperature pH was 40 ℃ and 7.5, respectively. It had certain thermal-stability at 40 ℃ and 45 ℃. Under the condition of 5 mmol/L Na+ and Ca2 +, the activity was significantly promoted, while Fe2 +, Cu2 + and Zn2 + inhibited. Further application results showed that Vibrio sp. ML17 could effectively degrade brown algae, and the degradation rates of kelp and sargassum reached 44.0% and 38.9% after 72 h, respectively. Vibrio sp. ML17 could have good application potential in the preparation of alginate oligo-saccharides and the control and removal of alginate in aquaculture.
Key words:  Monodonta labio    intestinal tract    Vibrio sp.    sodium alginate    alginate lyase
收稿日期:  2020-11-11      修回日期:  2021-01-19           出版日期:  2021-08-15      发布日期:  2021-08-23      期的出版日期:  2021-08-15
基金资助: 国家重点研发计划项目“益生菌健康功能与基于肠道微生物组学的食品营养代谢机理研究”(2017YFD0400303);国家863计划项目“天然多糖的制备与功能多糖的研制”(2012AA021505)
作者简介:  硕士研究生(罗学刚教授为通讯作者,E-mail:luoxuegang@tust.edu.cn)
引用本文:    
刘耀天,席茂盛,赵阳,等. 单齿螺肠道产褐藻胶裂解酶菌株的筛选、鉴别及酶学性质分析[J]. 食品与发酵工业, 2021, 47(15): 29-35.
LIU Yaotian,XI Maosheng,ZHAO Yang,et al. Screening,identification and enzyme characteristics of alginate lyase-producing strains from the gut of Monodonta labio[J]. Food and Fermentation Industries, 2021, 47(15): 29-35.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.026144  或          http://sf1970.cnif.cn/CN/Y2021/V47/I15/29
[1] 李杰,张睿,张勇,等.藻类养殖产业发展及其碳汇评估研究[J].江西农业,2019(8):124.LI J,ZHANG R,ZHANG Y,et al.Research on the development of algae culture industry and its carbon sink assessment[J].Jiangxi Agriculture,2019(8):124.
[2] BALDURSDOTTIR S G,KJONIKSEN A L,KARLSEN J,et al.Riboflavin-photosensitized changes in aqueous solutions of alginate.Rheological studies[J].Biomacromolecules,2003,4(2):429-36.
[3] FALKEBORG M,CHEONG L Z,GIANFICO C,et al.Alginate oligosaccharides:Enzymatic preparation and antioxidant property evaluation[J].Food Chem,2014,164:185-94.
[4] YANG Y,MA Z ,YANG G,et al.Alginate oligosaccharide indirectly affects toll-like receptor signaling via the inhibition of micro RNA-29b in aneurysm patients after endovascular aortic repair[J].Drug Design,Development and Therapy,2017(11):2 565-2 579.
[5] WU J,ZHANG M,ZHAGN Y,et al.Anticoagulant and FGF/FGFR signal activating activities of the heparinoid propylene glycol alginate sodium sulfate and its oligosaccharides[J].Carbohydr Polym,2016.136:641-8.
[6] TONDERVIK A,SLETTA H,KLINKENBERG G,et al.Alginate oligosaccharides inhibit fungal cell growth and potentiate the activity of antifungals against Candida and Aspergillus spp[J].PLoS One,2014.9(11):e112 518.
[7] TAMOSAITYTE S,GALLI R,UCKERMANN O,et al.Biochemical monitoring of spinal cord injury by FT-IR spectroscopy—Effects of therapeutic alginate implant in rat models[J].PLoS One,2015,10(11):e0 142 660.
[8] KIHARA M,SAKATA T.Influences of incubation temperature and various saccharides on the production of organic acids and gases by gut microbes of rainbow trout Oncorhynchus mykiss in a micro-scale batch culture[J].Journal of Comparative Physiology B:Biochemical,Systemic,and Environmental Physiology,2001,171(6):441-447.
[9] BOSE S K,HOWLADER P,JIA X,et al.Alginate oligosaccharide postharvest treatment preserve fruit quality and increase storage life via Abscisic acid signaling in strawberry[J].Food Chem,2019,283:665-674.
[10] ZHU B,YIN H,Alginate lyase:Review of major sources and classification,properties,structure-function analysis and applications[J].Bioengineered,2015,6(3):125-31.
[11] WONG T Y,PRESTON L A,SCHILLER N L,ALGINATE LYASE:Review of major sources and enzyme characteristics,structure-function analysis,biological roles,and applications[J].Annu Rev Microbiol,2000,54:289-340.
[12] SUZUKI H,SUZUKI K,INOUE A,et al.A novel oligoalginate lyase from abalone,Haliotis discus hannai,that releases disaccharide from alginate polymer in an exolytic manner[J].Carbohydr Res,2006,341(11):1809-19.
[13] RAHMAN M M,INOUE A,TANAKA H,et al.Isolation and characterization of two alginate lyase isozymes,AkAly28 and AkAly33,from the common sea hare Aplysia kurodai[J].Comp Biochem Physiol B Biochem Mol Biol,2010,157(4):317-25.
[14] KIM D,BAIK K S,HWANG Y S,et al.Vibrio hemicentroti sp.nov.An alginate lyase-producing bacterium,isolated from the gut microflora of sea urchin (Hemicentrotus pulcherrimus)[J].Int J Syst Evol Microbiol,2013,63(Pt 10):3697-703.
[15] 王一农,曾国权,单齿螺Monodonta labio的实验生态与环境分布[J].海洋科学,1994(3):14-16.WANG Y N,ZENG G Q,Experimental ecology and environmental distribution of Monodonta labio[J].Marine science,1994(3):14-16.
[16] 刘海超,张健,王共明,等.褐藻胶的降解方法及其产物生物活性研究进展[J].食品工业科技,2020,41(13):350-357;363.LIU H C,ZHANG J,WANG G M,et al.Research progress on the degradation methods of alginate and the biological activity of its products[J].Food Industry Technology,2020,41(13):350-357;363.
[17] ITO M,K WATANABE K,MARUYAMA T,et al.Enrichment of bacteria and alginate lyase genes potentially involved in brown alga degradation in the gut of marine gastropods[J].Sci Rep,2019,9(1):2 129.
[18] 李双,王碧盈,鲍时翔,等.产褐藻胶裂解酶交替单胞菌的发酵优化及alg2951的外源表达[J].基因组学与应用生物学,2020,39(5):2 088-2 095.LI S,WANG B Y,BAO S X,et al.Fermentation optimization of Alginate lyase-producing Alternomonas and exogenous expression of alg2951[J].Genomics and Applied Biology,2020,39(5):2 088-2 095.
[19] NARSICO J,INOUE A,OKA S,et al.Production of a novel dimeric 4-deoxy-L-erythro-5-hexoseulose uronic acid by a PL-17 exolytic alginate lyase from Hydrogenophaga sp.UMI-18[J].Biochem Biophys Res Commun,2020,525(4):982-988.
[20] 李云涛,汪立平,张孟,等.鲍鱼来源褐藻胶裂解酶菌株的筛选及发酵条件优化[J].大连海洋大学学报,2017,32(5):574-583.LI Y T,WANG L P,ZHANG M,et al.Screening of alginate lyase strains from abalone and optimization of fermentation conditions[J].Journal of Dalian Ocean University,2017,32(5):574-583.
[21] DONG S,WEI T D ,CHEN X L,et al.Molecular insight into the role of the N-terminal extension in the maturation,substrate recognition,and catalysis of a bacterial alginate lyase from polysaccharide lyase family 18[J].J Biol Chem,2014,289(43):29 558-29 569.
[22] 李学智.蛭弧菌在草鱼主养池塘应用试验[J].河北渔业,2018(8):41-42;52.LI X Z.Applicationtest of Budovibrium in grass carp main Pond[J].Hebei Fisheries,2018(8):41-42;52.
[23] 姚艳艳,刘心田,常丽荣,等.鲍鱼肠道海带降解菌株的筛选、鉴定及粗酶学性质研究[J].食品与发酵工业,2019,45(9):61-66.YAO YY,LIU X T,CHANG L R,et al.Screening,identification and crude enzymatic properties of abalone kelp degrading strains[J].Food and Fermentation Industries,2019,45(9):61-66.
[24] 丁淑妍,侯丽艳,于成勇,等.海洋性弧菌致病机制研究进展[J].职业与健康,2019,35(7):984-989.DING S Y,HOU L Y,YU C Y,et al.Research progress on pathogenic mechanism of Marine vibrio[J].Occupation andhealth,2019,35(7):984-989.
[1] 史瑛, 冯欣静, 周志磊, 姬中伟, 徐岳正, 毛健. 黄酒多糖对炎症性肠病及便秘作用机制的研究进展[J]. 食品与发酵工业, 2021, 47(9): 275-283.
[2] 任春霖, 董红丽, 王风芹, 宋安东. 低聚木糖生产技术及其对动物益生作用研究进展[J]. 食品与发酵工业, 2021, 47(9): 293-298.
[3] 鲁朝凤, 黄佳琦, 黄勇桦, 杨士花, 陈壁, 杨明静, 李永强. 青稞膳食纤维和多酚对肠道微生物的协同调节作用[J]. 食品与发酵工业, 2021, 47(8): 6-13.
[4] 贾叶, 包斌, 马明, 魏婷. 蚕蛹蛋白源肠内营养混悬剂对二型糖尿病小鼠肠道菌的影响[J]. 食品与发酵工业, 2021, 47(8): 62-66.
[5] 王路, 张蕾, 郑皎碧, 王琼熠, 范辉. 发酵制品调控糖脂代谢性疾病作用机制的研究进展[J]. 食品与发酵工业, 2021, 47(7): 292-300.
[6] 葛茵, 向沙沙, 张亚林, 郑谊青, 李勉, 朱炫. 木糖醇益生功能研究进展[J]. 食品与发酵工业, 2021, 47(5): 267-272.
[7] 徐珒昭, 汤梦琪, 徐境含, 滕国新, 许晓曦. 焦谷氨酸对高盐饮食小鼠肠道健康及肠道菌群的作用[J]. 食品与发酵工业, 2021, 47(2): 102-108.
[8] 胡国奥, 詹晓北, 李志涛, 朱莉, 赵志超, 张洪涛. 低谷蛋白大米在仿生大肠反应器中对肠道菌群结构及代谢的影响[J]. 食品与发酵工业, 2021, 47(13): 23-29.
[9] 杨英歌, 黄继翔, 李荣. 海藻酸钠的可控分子质量高效非均相降解[J]. 食品与发酵工业, 2021, 47(12): 133-139.
[10] 伍鹏, 王娟, 王晶晶, 陈晓东, 司徒文佑, 段素芳. 基于仿生胃肠道模型的发酵乳中益生菌存活率评价[J]. 食品与发酵工业, 2021, 47(12): 147-153.
[11] 孔庆敏, 朱慧越, 田培郡, 赵建新, 张灏, 陈卫, 王刚. 嗜酸乳杆菌La28对丙戊酸暴露引起的子代大鼠外周炎症和肝损伤的缓解作用[J]. 食品与发酵工业, 2021, 47(1): 125-131.
[12] 杨开, 张雅杰, 张酥, 蔡铭, 皮雄娥, 胡君荣, 关荣发, 孙培龙. 灵芝孢子粉低聚糖的制备及调节肠道菌群功能研究[J]. 食品与发酵工业, 2020, 46(9): 37-42.
[13] 张庆芳, 王浚晨, 于爽, 刘春莹, 迟雪梅, 迟乃玉. 人体肠道中产尿酸氧化酶细菌的筛选、鉴定与酶学性质研究[J]. 食品与发酵工业, 2020, 46(8): 34-39.
[14] 赵孟良, 任延靖. 菊粉及其调节宿主肠道菌群机制的研究进展[J]. 食品与发酵工业, 2020, 46(7): 271-276.
[15] 金星, 贺禹丰, 周永华, 陈晓华, 王刚, 赵建新, 张灏, 陈卫. 唾液乳杆菌CCFM 1054通过改变肠道菌群缓解空肠弯曲杆菌在小鼠体内的感染[J]. 食品与发酵工业, 2020, 46(5): 1-8.
[1] . Isolation and identification of anaerobic bacteria in the process of Maotai-flavor liquor brewing[J]. Food and Fermentation Industries, 0, (): 1 .
[2] ZHANG Xue-qin et al.. Optimization of preparation of flavor based on material by microbial composite fermentation of Antarctic krill[J]. Food and Fermentation Industries, 0, (): 1 .
[3] Guo Li,Zhu Lin,Wang Giaozhen. Exploiture and Preparation of Microcapsules of d-Limonene[J]. Food and Fermentation Industries, 2006, 32(4): 70 .
[4] Cheng Jing. Food Safety Analysis of the Acrylicamide in Fries[J]. Food and Fermentation Industries, 2006, 32(7): 71 .
[5] XIONG Cen,SU Zhi-yi,ZHEN Yan-jie,TANG Lu,LI Yong-le. Application of multicomposition analysis and pattern recognition in identification of geographical indication vinegar[J]. Food and Fermentation Industries, 2016, 42(10): 156 .
[6] Liu Fei,Fang Baishan. Hydrogen and 1,3-Propanediol Production from Glycerol in Biodiesel Wastes by Klebsiella pneumoniae[J]. Food and Fermentation Industries, 2006, 32(10): 1 .
[7] Huang Li,Wu Tao,Feng Fengjun. Effect of Activated Carbon Treatment on the Carambola during Stovage[J]. Food and Fermentation Industries, 2006, 32(11): 156 .
[8] CUI Shu-mao,ZHAO Jian-xin,CHEN Wei,ZHANG Hao. Effect of acids produced by metabolizing carbohydrate of protectants on viability of Lactobacillus during freezing[J]. Food and Fermentation Industries, 2017, 43(3): 14 .
[9] SHEN Fang-lin,HUANG Shuang-cheng,HOU Peng-chen,GENG An-li,RUAN Wen-quan. A high effective autonomous replicative sequence in Saccharomyces cerevisiae[J]. Food and Fermentation Industries, 2017, 43(3): 20 .
[10] SHAO Xin,SUN Kai,XIONG Jing,YU Chong,WU Xi-Yang. The cadmium removal mechanism of lactobacillus strains[J]. Food and Fermentation Industries, 2017, 43(3): 48 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn