Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (15): 98-103    DOI: 10.13995/j.cnki.11-1802/ts.026179
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
青稞结构对淀粉体外消化的影响
张翼麟1,2, 谢勇1, 易川虎3, 刘雄1,2,3*
1(西南大学 食品科学学院,重庆,400715)
2(食品科学与工程国家级实验教学示范中心(西南大学),重庆,400715)
3(昌都君亲农业科技开发有限公司,西藏 昌都,854000)
Effect of structure of hull-less barley on the starch digestion in vitro
ZHANG Yilin1,2, XIE Yong1, YI Chuanhu3, LIU Xiong1,2,3*
1(College of Food Science,Southwest University,Chongqing 400715,China)
2(National Demonstration Center for Experimental Food Science and Engineering Education,Southwest University,Chongqing 400715,China)
3(Changdu Junqin Agricultural Science and Technology Development Co.Ltd.,Changdu 854000,China)
下载:  HTML  PDF (3496KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探索全谷物青稞体外调节血糖功效的机理,分析了青稞β-葡聚糖含量及其影响因素。分别采用扫描电镜、激光共聚焦显微镜、激光粒度仪、黏度糊化仪分析青稞的微观结构、粒径、糊化特性,并以青稞淀粉为对照,分析青稞β-葡聚糖、纤维素、蛋白质对青稞全粉体外消化的影响。结果表明:去除青稞全粉中的β-葡聚糖和纤维素增加了淀粉的消化率,相较于正常消化的全粉,不经胃消化保留蛋白质明显抑制了其淀粉的消化;而添加纯β-葡聚糖和蛋白质不但不会抑制纯青稞淀粉的消化,反而能起到轻微的促进作用,糊化特性的测定结果中也显示了相似的影响规律。相比于青稞全粉的β-葡聚糖含量(5.60±0.06)%,去除青稞蛋白质以及去除淀粉和蛋白质分别使青稞β-葡聚糖含量增加3.9%和8.8%;且去除β-葡聚糖和蛋白质后降低了青稞全粉的粒径;显微镜观察表明,青稞β-葡聚糖位于青稞的细胞壁,淀粉颗粒分布于细胞内。这些结果说明,青稞β-葡聚糖对淀粉消化的抑制作用得益于青稞的完整结构,而其本身并不会对淀粉酶活性造成影响。因此,在青稞及其产品的加工中应尽可能保留其完整结构以减少其生理功效的损失。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张翼麟
谢勇
易川虎
刘雄
关键词:  青稞  β-葡聚糖  淀粉  蛋白质  完整结构  降血糖    
Abstract: To investigate the mechanism of whole-grain hull-less barley in regulating blood glucose in vitro, the content of β-glucan in hull-less barley and its factors were analyzed. In addition, the microstructure, particle size and pasting characteristics of hull-less barley were analyzed by using the scanning electron microscope, laser scanning confocal microscope, laser particle size analyzer and rapid viscosity analyzer, respectively. Subsequently, the impact of β-glucan, cellulose and protein on the digestion of starch in hull-less barley powder were evaluated. The results showed that removing β-glucan and cellulose from hull-less barley increased the starch digestibility, however, omitting gastric digestion could significantly limit the rate of starch digestion. Interestingly, the digestion of pure starch was not inhibited but improved slightly by adding a single β-glucan or protein. Similar results were observed in pasting viscosity. Moreover, compared with the content (5.60±0.06)% of β-glucan in whole hull-less barley, this value increased by 3.9% and 8.8% by removing protein and starch, respectively. The particle size of hull-less barley powder was reduced after the β-glucan or protein was removed. Besides, the microstructure also showed that β-glucan was located in the cell wall of hull-less barley, and the starch granules were distributed in the cell. These results indicated that the inhibitory effect of β-glucan on starch digestion depended on the intact structure of hull-less barley. Meanwhile, the activity of amylase was not retarded by β-glucan. Therefore, it is necessary to remain its intact structure as far as possible to ensure the physiological effect when processing the hull-less barley and its related products.
Key words:  hull-less barley    β-glucan    starch    protein    intact structure    hypoglycemic effect
收稿日期:  2020-11-15      修回日期:  2021-01-07           出版日期:  2021-08-15      发布日期:  2021-08-23      期的出版日期:  2021-08-15
基金资助: 国家大麦青稞产业技术体系项目(CARS-05-18)
作者简介:  本科生(刘雄教授为通讯作者,E-mail:liuxiong848@hotmail.com)
引用本文:    
张翼麟,谢勇,易川虎,等. 青稞结构对淀粉体外消化的影响[J]. 食品与发酵工业, 2021, 47(15): 98-103.
ZHANG Yilin,XIE Yong,YI Chuanhu,et al. Effect of structure of hull-less barley on the starch digestion in vitro[J]. Food and Fermentation Industries, 2021, 47(15): 98-103.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.026179  或          http://sf1970.cnif.cn/CN/Y2021/V47/I15/98
[1] ROCHLANI Y,POTHINENI N V,KOVELAMUDI S,et al.Metabolic syndrome:Pathophysiology,management,and modulation by natural compounds[J].Therapeutic Advances in Cardiovascular Disease,2017,11(8):215-225.
[2] GONG L X,CAO W Y,CHI H L,et al.Whole cereal grains and potential health effects:Involvement of the gut microbiota[J].Food Research International,2018,103:84-102.
[3] LIU R H.Whole grain phytochemicals and health[J].Journal of Cereal Science,2007,46(3):207-219.
[4] MARVENTANO S,VETRANI C,VITALE M,et al.Whole grain intake and glycaemic control in healthy subjects:A systematic review and meta-analysis of randomized controlled trials[J].Nutrients,2017,9(7):769.
[5] MONTONEN J,BOEING H,FRITSCHE A,et al.Consumption of red meat and whole-grain bread in relation to biomarkers of obesity,inflammation,glucose metabolism and oxidative stress[J].European Journal of Nutrition,2013,52(1):337-345.
[6] LUTSEY P L,JACOBS D R,KORI S,et al.Whole grain intake and its cross-sectional association with obesity,insulin resistance,inflammation,diabetes and subclinical CVD:The MESA study[J].The British Journal of Nutrition,2007,98(2):397-405.
[7] WU W J,QIU J,WANG A L,et al.Impact of whole cereals and processing on type 2 diabetes mellitus:A review[J].Critical Reviews in Food Science and Nutrition,2020,60(9):1 447-1 474.
[8] 臧靖巍, 阚建全,陈宗道,等.青稞的成分研究及其应用现状[J].中国食品添加剂,2004,5(4):43-46.ZANG J W,KAN J Q,CHEN Z D,et al.Applications of barley and study on its components[J].China Food Additives,2004,5(4):43-46.
[9] ZHANG H,LI Z,TIAN Y J,et al.Interaction between barley β-glucan and corn starch and its effects on the in vitro digestion of starch[J].International Journal of Biological Macromolecules,2019,141:240-246.
[10] XIAO X,TAN C,SUN X J,et al.Effects of fermentation on structural characteristics and in vitro physiological activities of barley β-glucan[J].Carbohydrate Polymers,2020,231.DOI:10.1016/j.carbpol.2019.115685.
[11] HOLM J,HAGANDER B,BJ?RCK I,et al.The effect of various thermal processes on the glycemic response to whole grain wheat products in humans and rats[J].The Journal of Nutrition,1989,119(11):1 631-1 638.
[12] EDWARDS C H,GRUNDY M M,GRASSBY T et al.Manipulation of starch bioaccessibility in wheat endosperm to regulate starch digestion,postprandial glycemia,insulinemia,and gut hormone responses:A randomized controlled trial in healthy ileostomy participants[J].The American Journal of Clinical Nutrition,2015,102(4):791-800.
[13] MINEKUS M,ALMINGER M,ALVITO P,et al.A Standardised static in vitro digestion method suitable for food-an international consensus[J].Food & Function,2014,5(6):1 113-1 124.
[14] KUREK M A,KARP S,STELMASIAK A,et al.Effect of natural flocculants on purity and properties of β-glucan extracted from barley and oat[J].Carbohydrate Polymers,2018,188:60-67.
[15] CAO X Y,TONG J Y,DING M Y,et al.Physicochemical properties of starch in relation to rheological properties of wheat dough (Triticum aestivum L.)[J].Food Chemistry,2019,297.DOI:10.1016/j.foodchem.2019.125000.
[16] 杨希娟, 党斌,吴昆仑,等.青稞蛋白的超声波辅助提取工艺及其功能特性研究[J].中国食品学报,2013,13(6):48-56.YANG X J,DANG B,WU K L,et al.Study on functional properties and hulless barley protein by ultrasonic-assisted extraction[J].Journal of Chinese Institute of Food Science and Technology,2013,13(6):48-56.
[17] LANGENAEKEN N A,IEVEN P,HEDLUND E G,et al.Arabinoxylan,β-glucan and pectin in barley and malt endosperm cell walls:A microstructure study using CLSM and cryo-SEM[J].The Plant Journal,2020,103(4):1 477-1 489.
[18] KAUSHIK M,YADAV B S,YADAV R B,et al.Assessing the influence of lentil protein concentrate on pasting and rheological properties of barley starch[J].Journal of Food Measurement and Characterization,2020,14(3):1 623-1 633.
[19] SUN J,FU J,WANG Y,et al.Endogenous rice endosperm hemicellulose slows in vitro starch digestibility[J].International Journal of Food Science & Technology,2019,54(3):734-743.
[20] CHEN Z W,HUANG Q Q,XIA Q,et al.Intact endosperm cells in buckwheat flour limit starch gelatinization and digestibility in vitro[J].Food Chemistry,2020,330:127318.
[21] KIM E H J,PETRIE J R,MOTOI L,et al.Effect of structural and physicochemical characteristics of the protein matrix in pasta on in vitro starch digestibility[J].Food Biophysics,2008,3(2):229-234.
[22] JENKINS D J A,WOLEVER T M S,THORNE M J,et al.Effect of starch-protein interaction in wheat on its digestibility and glycaemic response[J].Canadian Institute of Food Science and Technology Journal,1987,20(5):320.
[23] LI H T,LI Z F,FOX G P,et al.Protein-starch matrix plays a key role in enzymic digestion of high-amylose wheat noodle[J].Food Chemistry,2020,336.10.1016/j.foodchem.2020.127719.
[24] KARIMI R,AZIZI MH,XU Q,et al.Enzymatic removal of starch and protein during the extraction of dietary fiber from barley bran[J].Journal of Cereal Science,2018,83:259-265.
[25] JUHÁSZ R,SALGÓ A.Pasting behavior of amylose,amylopectin and their mixtures as determined by rva curves and first derivatives[J].Starch-Stärke,2008,60(2):70-78.
[26] LIU Y,BAILEY T B,WHITE P J.Individual and interactional effects of β-glucan,starch,and protein on pasting properties of oat flours[J].Journal of Agricultural and Food Chemistry,2010,58(16):9 198-9 203.
[27] ZHANG J,LUO K,ZHANG G.Impact of native form oat β-glucan on starch digestion and postprandial glycemia[J].Journal of Cereal Science,2017,73:84-90.
[28] PÉREZ-QUIRCE S,LAZARIDOU A,BILIADERIS C G,et al.Effect of β-glucan molecular weight on rice flour dough rheology,quality parameters of breads and in vitro starch digestibility[J].LWT-Food Science and Technology,2017,82:446-453.
[29] BRENNAN C S,CLEARY L J.Utilisation glucagel® in the β-glucan enrichment of breads:A physicochemical and nutritional evaluation[J].Food Research International,2007,40(2):291-296.
[30] BONAFACCIA G,MAROCCHINI M,KREFT I.Composition and technological properties of the flour and bran from common and tartary buckwheat[J].Food Chemistry,2003,80(1):9-15.
[1] 蒋彤, 纪杭燕, 柏玉香. Lactobacillus reuteri 121 4,6-α-葡萄糖基转移酶GtfBdN改性薯类淀粉产物结构及理化特性研究[J]. 食品与发酵工业, 2021, 47(9): 42-48.
[2] 符群, 郐滨, 钟明旭, 吴小杰. 超声波辅助酶解法提取北虫草菌素及其降血糖活性研究[J]. 食品与发酵工业, 2021, 47(9): 120-127.
[3] 伏慧慧, 马雪莲, 普莉雯, 王念念, 袁湖川, 黄桂芳, 王庆玲. 干腌牛肉加工过程中蛋白质变化对品质的影响[J]. 食品与发酵工业, 2021, 47(9): 223-230.
[4] 鲁朝凤, 黄佳琦, 黄勇桦, 杨士花, 陈壁, 杨明静, 李永强. 青稞膳食纤维和多酚对肠道微生物的协同调节作用[J]. 食品与发酵工业, 2021, 47(8): 6-13.
[5] 贾叶, 包斌, 马明, 魏婷. 蚕蛹蛋白源肠内营养混悬剂对二型糖尿病小鼠肠道菌的影响[J]. 食品与发酵工业, 2021, 47(8): 62-66.
[6] 周慧宁, 张一晟, 张惠玲, 李海峰. 一株可降解马铃薯淀粉汁水中蛋白质菌株筛选与发酵产物分析[J]. 食品与发酵工业, 2021, 47(8): 158-164.
[7] 孟洋, 卢红梅, 杨双全, 章之柱, 陈莉, 刘兵, 王利萍. 铁皮石斛复配花茶制作工艺及其功能性研究[J]. 食品与发酵工业, 2021, 47(8): 170-179.
[8] 周雯, 庄蕾, 吴森. 植物多糖在Ⅱ型糖尿病降血糖作用方面的研究进展[J]. 食品与发酵工业, 2021, 47(8): 290-296.
[9] 韩宛芸, 张长懿, 顾泽鹏, 段小雨, 孙庆杰, 邱立忠, 卞希良, 邬应龙, 刘韫滔. 高产β-葡聚糖的黄伞菌株分离、鉴定及其体外模拟消化[J]. 食品与发酵工业, 2021, 47(7): 51-57.
[10] 赵改名, 茹昂, 郝婉名, 张桂艳, 田玮, 祝超智, 乃比江, 刘建明. 不同母本西门塔尔杂交牛各部位肉品质与蛋白质功能特性的差异[J]. 食品与发酵工业, 2021, 47(7): 78-85.
[11] 耿雪营, 郭藏, 米生权, 张艳贞, 郭俊霞, 陈文. 单宁的血糖调节活性功能研究进展[J]. 食品与发酵工业, 2021, 47(7): 301-306.
[12] 朱慧越, 邹仁英, 许梦舒, 王琳琳, 田培郡, 陈卫, 王刚. 短链脂肪酸-酰化淀粉对小鼠抑郁样行为的缓解及机制[J]. 食品与发酵工业, 2021, 47(6): 26-33.
[13] 张龑, 龚号迪, 陈志成. 脱皮率对青稞粉的品质及面团特性的影响[J]. 食品与发酵工业, 2021, 47(5): 133-137.
[14] 田铸, 师希雄, 张攀高, 郭兆斌, 余群力, 王建忠. 蛋白质乙酰化对宰后肉品质调控的研究进展[J]. 食品与发酵工业, 2021, 47(4): 269-274.
[15] 王存堂, 高增明, 张福娟, 朱宏菲, 周庆雯, 孔保华. 洋葱皮乙醇提取物对生鲜猪肉色泽、脂质和蛋白质氧化稳定性的影响[J]. 食品与发酵工业, 2021, 47(3): 87-94.
[1] LIU Wen-ying et al. Protective effect of wheat oligopeptides and glutamine against gastrointestinal mucosa damage in rats[J]. Food and Fermentation Industries, 2017, 43(11): 51 -57 .
[2] JIA Ya-nan et al. The Inhibitionofα-glucosidaseand Antioxidant Activityof Endophyte Metaboliteisolated from Mulberry[J]. Food and Fermentation Industries, 2017, 43(11): 132 .
[3] WU Peng et al. The development of microwave cooked carrot chips based on domestic microwave oven[J]. Food and Fermentation Industries, 2017, 43(11): 180 .
[4] CAI Jian. Determinationoffolicacidinsportsdrinkby UPLC-MS/MS[J]. Food and Fermentation Industries, 2017, 43(11): 220 .
[5] ZOU Yu-feng et al. Review onresearchprogressanddevelopmentofgel-typemeat productsprocessing technology[J]. Food and Fermentation Industries, 2017, 43(11): 232 .
[6] JI Xiao-kai et al. Research advance in the effect of electric alstimulation on beef quality[J]. Food and Fermentation Industries, 2017, 43(11): 244 .
[7] . Isolation and identification of anaerobic bacteria in the process of Maotai-flavor liquor brewing[J]. Food and Fermentation Industries, 0, (): 1 .
[8] YU Qing-lin et al. Fermentation optimization of recombinant Yarrowia lipolytica for its efficient succinic acid production[J]. Food and Fermentation Industries, 0, (): 1 .
[9] Zheng Dan et al.. The inhibiting effect of flavonoid “astilbin” on pancreatic lipase[J]. Food and Fermentation Industries, 0, (): 1 .
[10] ZHANG Xue-qin et al.. Optimization of preparation of flavor based on material by microbial composite fermentation of Antarctic krill[J]. Food and Fermentation Industries, 0, (): 1 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn