Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (15): 15-21    DOI: 10.13995/j.cnki.11-1802/ts.026252
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
常压室温等离子体诱变选育产单宁酶炭黑曲霉及发酵参数优化
董弦弦1,2,3, 吴晓江1,2,3, 张钰龙1,2,3, 巫小丹1,2,3, 万茵1,2,3, 刘成梅1,2,3, 付桂明1,2,3*
1(食品科学与技术国家重点实验室(南昌大学),江西 南昌,330000)
2(南昌大学 食品学院,江西 南昌,330000)
3(南昌大学 国际食品创新研究院,江西 南昌,330000)
Breeding of tannase-producing Aspergillus carbonarius using ARTP mutagenesis and fermentation optimization
DONG Xianxian1,2,3, WU Xiaojiang1,2,3, ZHANG Yulong1,2,3, WU Xiaodan1,2,3, WAN Yin1,2,3, LIU Chengmei1,2,3, FU Guiming1,2,3*
1(State Key Laboratory of Food Science and Technology,Nanchang University,Nanchang 330000,China)
2(College of Food Science & Technology,Nanchang University,Nanchang 330000,China)
3(International Institute of Food Innovation,Nanchang University,Nanchang 330000,China)
下载:  HTML  PDF (2258KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用常压室温等离子体技术(atmospheric room temperature plasma,ARTP)对炭黑曲霉FCYN212菌株进行诱变,选育单宁酶高产菌株,并对单宁酶产量提高的菌株进行发酵罐发酵参数优化。结果表明:通过ARTP诱变后结合溴酚蓝平板变色圈法初筛,摇瓶发酵复筛,成功筛选到1株单宁酶活力较高的突变株NCUF M8,且与原始菌株酶活力(0.135 U/mL)相比,NCUF M8酶活力为0.212 U/mL,显著提高了57%(P<0.05);遗传稳定性结果表明,经8次连续传代并摇瓶发酵,NCUF M8平均酶活力达0.208 U/mL,具有良好的遗传稳定性。发酵罐发酵参数优化结果表明:最佳发酵参数为,发酵时间4 d,接种量2%,单宁酸质量浓度60 g/L,溶氧体积分数45%,诱导物添加时间36 h,该条件下NCUF M8酶活力为1.377 U/mL,相比未优化酶活力(0.212 U/mL)显著提高了549%(P<0.05)。研究实验结果为单宁酶的高产菌株选育提供了新的依据,并可助力节约单宁酶的工业化生产成本。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董弦弦
吴晓江
张钰龙
巫小丹
万茵
刘成梅
付桂明
关键词:  单宁酶  炭黑曲霉  常压室温等离子体诱变  发酵参数优化    
Abstract: In order to obtain high yield of tannase, atmospheric room temperature plasma (ARTP) was used to mutagenize Aspergillus carbonarius FCYN212 and fermentation parameters were optimized. The results showed that NCUF M8 with high tannase activity was successfully selected after ARTP mutagenesis, bromophenol blue circle screening and fermentation. The tannase activity of NCUF M8 was 0.212 U/mL, which was 57% higher than that of parent strain (0.135 U/mL). After eight consecutive generations and fermentation tests, the tannase activity levels were kept at 0.208 U/mL, which indicated that it had a good genetic stability. The optimal fermentation conditions were as followed: fermentation time of 4 d, inoculation of 2%, tannic acid of 60 g/L, dissolved oxygen concentration of 45%, and an addition time of inducer at 36 h. The tannase activity of NCUF M8 reached 1.377 U/mL under the optimized conditions, which was 549% significantly higher than original strain of 0.212 U/mL (P<0.05). The results provided a theoretical basis for the mutation breeding of tannase producing strain. Besides, it could reduce the production cost of tannase industrial production.
Key words:  tannase    Aspergillus carbonarius    ARTP    optimization of fermentation parameters
收稿日期:  2020-11-26      修回日期:  2021-01-07           出版日期:  2021-08-15      发布日期:  2021-08-23      期的出版日期:  2021-08-15
基金资助: 国家自然科学基金项目(31460434)
作者简介:  硕士研究生(付桂明教授为通讯作者,E-mail: fuguiming@ncu.edu.cn )
引用本文:    
董弦弦,吴晓江,张钰龙,等. 常压室温等离子体诱变选育产单宁酶炭黑曲霉及发酵参数优化[J]. 食品与发酵工业, 2021, 47(15): 15-21.
DONG Xianxian,WU Xiaojiang,ZHANG Yulong,et al. Breeding of tannase-producing Aspergillus carbonarius using ARTP mutagenesis and fermentation optimization[J]. Food and Fermentation Industries, 2021, 47(15): 15-21.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.026252  或          http://sf1970.cnif.cn/CN/Y2021/V47/I15/15
[1] LI R Y,FU G M,LIU C M,et al.Tannase immobilisation by amino-functionalised magnetic Fe3O4-chitosan nanoparticles and its application in tea infusion[J].International Journal of Biological Macromolecules,2018,114:1 134-1 143.
[2] SIRVEN M A,NEGRETE M,TALCOTT S T.Tannase improves gallic acid bioaccessibility and maintains the quality of mango juice[J].International Journal of Food Science & Technology,2019,54(5):1 523-1 529.
[3] GOVINDARAJAN R K,REVATHI S,RAMESHKUMAR N,et al.Microbial tannase:Current perspectives and biotechnological advances[J].Biocatalysis & Agricultural Biotechnology,2016,6:168-175.
[4] YAO J,CHEN Q L,ZHONG G X,et al.Immobilization and characterization of tannase from a metagenomic library and its use for removal of tannins from green tea infusion[J].Journal of Microbiology & Biotechnology,2014,24 (1):80-86.
[5] KOSEKI T,ICHIKAWA K,SASAKI K,et al.Characterization of a novel Aspergillus oryzae tannase expressed in Pichia pastoris[J].Journal of Bioscience and Bioengineering,2018,126(5):553-558.
[6] CAO Q Q,ZOU C,ZHANG Y H,et al.Improving the taste of autumn green tea with tannase[J].Food Chemistry,2019,277:432-437.
[7] GOVINDARAJAN R K,MATHIVANAN K,R RAMESHKUMAR N,et al.Purification,structural characterization and biotechnological potential of tannase enzyme produced by Enterobacter cloacae strain 41[J].Process Biochemistry,2019,77:37-47.
[8] SHARMA N K,BENIWAL V,KUMAR N,et al.Production of tannase under solid-state fermentation and its application in detannification of guava juice[J].Preparative Biochemistry & Biotechnology,2014,44(3):281-290.
[9] YAO J,GUO G S,REN G H,et al.Production,characterization and applications of tannase[J].Journal of Molecular Catalysis B Enzymatic,2014,101:137-147.
[10] 王犁烨,陈新军,卢丕超,等.紫外诱变选育高产酒精及酸的酿酒酵母[J].中国酿造,2019,38(1):104-108.WANG L Y,CHEN X J,LU P C,et al.Breeding of Saccharomyces cerevisiae with high-yield alcohol and acid by ultraviolet mutation[J].China Brewing,2019,38(1):104-108.
[11] 李玲,南秋利,胡永红.低能N+注入选育利普司他汀高产菌株的研究[J].中国科技论文,2018,13(12):1 372-1 374;1 408.LI L,NAN Q L,HU Y H.Study on breeding of high yield lipstatin-producing strains by low energy nitrogen ion implantation[J].China Sciencepaper,2018,13(12):1 372-1 374;1 408.
[12] 刘明志,吕镇城,冉梦莲,等.产紫杉醇葡萄座腔菌J11菌株诱变获得高产菌株[J].药物生物技术,2015,22(1):45-48.LIU M Z,LV Z C,RAN M L,et al.Mutant high-yield paclitaxel strain obtained from paclitaxel-producing endophytic fungus Botryosphaeria dothidea J11[J].Pharmaceutical Biotechnology,2015,22(1):45-48.
[13] ZHANG K P,MOHSIN A,DAI Y C,et al.Combinatorial effect of ARTP mutagenesis and ribosome engineering on an industrial strain of Streptomyces albus S12 for enhanced biosynthesis of salinomycin[J].Frontiers in Bioengineering and Biotechnology,2019,7:212.
[14] 张雪,张晓菲,王立言,等.常压室温等离子体生物诱变育种及其应用研究进展[J].化工学报,2014,65(7):2 676-2 684.ZHANG X,ZHANG X F,WANG L Y,et al.Recent progress on atmospheric and room temperature plasma mutation breeding technology and its applications[J].CIESC Journal,2014,65(7):2 676-2 684.
[15] LIU K Y,FANG H,CUI F J,et al.ARTP mutation and adaptive laboratory evolution improve probiotic performance of Bacillus coagulans[J].Applied Microbiology and Biotechnology,2020,104(14):6 363-6 373.
[16] 毛斌,徐子文,陈延儒,等.常压室温等离子体诱变技术选育曲霉型豆豉发酵菌种研究[J].中国食品添加剂,2020,31(6):80-87.MAO B,XU Z W,CHEN Y R,et al.Study on breeding of Aspergillus Dou-Chi fermentation strains by mutation technology of atmospheric pressure room temperature plasma[J].China Food Additives,2020,31(6):80-87.
[17] MONDAL K C,BANERJEE D,JANA M,et al.Colorimetric assay method for determination of the tannin acyl hydrolase (EC 3.1.1.20) activity[J].Analytical Biochemistry,2001,295(2):168-171.
[18] 夏俊芳,王小灵,古丽娜孜,等.递推式ARTP-UV复合诱变筛选高产β-葡萄糖苷酶菌株[J].食品工业科技,2020,41(15):129-134;142.XIA J F,WANG X L,GULI N Z,et al.Iterative mutagenesis breeding of high-yielding β-glucosidase strains with ARTP-UV[J].Science and Technology of Food Industry,2020,41(15):129-134;142.
[19] 李慧玲,刘永梅.诱变选育高产DHA裂殖壶菌突变株[J].食品科技,2015,40(9):12-16.LI H L,LIU Y M.A high-DHA production strain of Schizochytrium sp.through mutagenesis[J].Food Science and Technology,2015,40(9):12-16.
[20] KUMAR M,SINGH A,BENIWAL V,et al.Improved production of tannase by Klebsiella pneumoniae using Indian gooseberry leaves under submerged fermentation using Taguchi approach[J].AMB Express,2016,6(1):46.
[21] 周罗娜,吴鑫颖,邱树毅,等.常压室温等离子体快速诱变选育单宁酶高产黑曲霉菌株[J].食品科技,2016,41(7):14-19.ZHOU L N,WU X Y,QIU S Y,et al.Screening of mutants of higher tannase activity strain of Aspergillus niger by atmospheric and room temperature plasmas[J].Food Science and Technology,2016,41(7):14-19.
[22] 朱运平,褚文丹,黎芳,等.黑曲霉1504产葡萄糖氧化酶的ARTP诱变、产酶条件优化及改良面粉品质研究[J].中国食品学报,2019,19(2):90-97.ZHU Y P,CHU W D,LI F,et al.Studies on the ARTP mutation,enzyme producing condition and improving flour quality of glucose oxidase by Aspergillus niger 150[J].Journal of Chinese Institute of Food Science and Technology,2019,19(2):90-97.
[23] 张珂,魏明,崔晓峰,等.ARTP诱变选育亚油酸异构酶高产菌株及其发酵条件优化[J].徐州工程学院学报(自然科学版),2018,33(4):55-59.ZHANG K,WEI M,CUI X F,et al.Breeding of linoleic acid isomerase-producing strain and optimization of fermentative conditions[J].Journal of Xuzhou Institute of Technology (Natural Sciences Edition),2018,33(4):55-59.
[24] 李盼盼,黄铸敏,崔莹,等.诱导物的添加时间对菌株Beta proteobacterium T1壳聚糖酶产量的影响[J].食品科技,2013,38(8):34-37.LI P P,HUANG Z M,CUI Y,et al.The effects of adding inducer in different times on the production of chitosanase of the strain Beta proteobacterium T1[J].Food Science and Technology,2013,38(8):34-37.
[1] 孙可澄, 尹花, 赵鑫锐, 陈璐, 李江华, 侯晓平, 堵国成. 多轮ARTP诱变快速筛选低产乙醛工业啤酒酵母[J]. 食品与发酵工业, 2021, 47(15): 56-62.
[2] 林杨, 布丽根·加冷别克, 孙建, 谭慧林, 周洁, 刘少杰, 王伟, 顾美英, 张志东. 乳酸菌的筛选及高产酸菌株的常压室温等离子体诱变选育[J]. 食品与发酵工业, 2021, 47(12): 176-181.
[3] 郭佳欣, 张培基, 刘丁玉, 洪坤强, 陈涛, 王智文. 常压室温等离子体诱变选育高产核黄素枯草芽孢杆菌[J]. 食品与发酵工业, 2020, 46(4): 28-33.
[4] 赵昊, 全莉, 于佳俊, 张晓蒙, 马文瑞, 武运, 薛洁. 新疆酿酒葡萄中赭曲霉毒素A来源菌的筛选及其产毒条件研究[J]. 食品与发酵工业, 2020, 46(19): 35-41.
[5] 李豪, 白光剑, 吴静, 杨海泉, 邹伟. 紫外-常压室温等离子体复合诱变高产纤维素酶真菌[J]. 食品与发酵工业, 2019, 45(15): 81-86.
[6] 李梦迪, 张志萌, 董自星, 田康明, 金鹏, 刘晓光, 王正祥. 黑曲霉单宁酶TahA的克隆表达和酶学特性解析[J]. 食品与发酵工业, 2018, 44(11): 15-21.
[7] 闫春宇,胡冰涛,王素英. 常压室温等离子体诱变对螺旋藻中氨基酸成分的影响[J]. 食品与发酵工业, 2017, 43(1): 60-.
[8] 焦天慧,吕长鑫,冯叙桥,李萌萌,刘苏苏,芦宇,纪秀凤,曹敏杰. 单宁酶的分离纯化及其在软饮料工业中的应用[J]. 食品与发酵工业, 2016, 42(11): 262-.
[9] 保玉心,邱树毅,李秧针,黄永光. 固态发酵黑曲霉产单宁酶发酵条件研究[J]. 食品与发酵工业, 2008, 34(6): 54-.
[10] 刘冠卉,屠洁,马海乐,鲍坤. 壳聚糖固定化单宁酶及其澄清绿茶汤的应用研究[J]. 食品与发酵工业, 2008, 34(10): 166-.
[11] 苏二正,夏涛,张正竹,黄继轸,胡颍蕙. 共固定化单宁酶和β-葡萄糖苷酶对茶饮料增香和除混效果的研究[J]. 食品与发酵工业, 2005, 31(5): 125-.
[1] . Isolation and identification of anaerobic bacteria in the process of Maotai-flavor liquor brewing[J]. Food and Fermentation Industries, 0, (): 1 .
[2] CHEN Xue,LIU Han,PEI Fang-yi,LIU Zhen-yan,HOU Hui-ling,GUO Hao,DING Lin,YANG Wen-qin,ZANG Chuan-gang,LIU Yu-chao,GUAN Hong. Assessment of Bifidobacterial viability during cheese ripening by real-time PCR quantification[J]. Food and Fermentation Industries, 2017, 43(9): 117 .
[3] Liu Cen,Xu Zhinan,Shi Feng,Cen Peilin. Optimizing Fermentation of Polyglutamic Acid by Unrefined Glutamic Acid as Raw Material[J]. Food and Fermentation Industries, 2006, 32(5): 9 .
[4] . [J]. Food and Fermentation Industries, 2008, 34(8): 74 .
[5] . Study and Development of Fast Food of Caddice Wool Chine[J]. Food and Fermentation Industries, 2003, 29(10): 53 .
[6] PanYan,Han Congfen,Han Yang,Tai Xisheng,Wang Changtao. The Preliminary Study of Fermentation on Extracting β-glucan[J]. Food and Fermentation Industries, 2009, 35(4): 116 .
[7] YE Chen,WANG Zhe,ZHONG Qing-ping. Antibacterial effects of scale collagen protein-based antibacterial gel[J]. Food and Fermentation Industries, 2016, 42(6): 106 .
[8] . Fishy odour and quality in sturgeon muscle during refrigerated storage[J]. Food and Fermentation Industries, 2016, 42(7): 242 .
[9] HAN Yang,ZHANG Yu,GUAN Yu-ge,WANG Si-wei,CUI Na. Thawing technology of frozen Alaska Pollock[J]. Food and Fermentation Industries, 2016, 42(9): 143 .
[10] HU Jin-hua,LU Ji-ping,ZHOU Yue,ZHOU Peng. The effect of CMC on the stability of calcium-fortified liquid dairy products and its mechanism investigation[J]. Food and Fermentation Industries, 2016, 42(11): 97 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn