Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (20): 75-82    DOI: 10.13995/j.cnki.11-1802/ts.026261
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
基于高通量测序分析果桑茶对2型糖尿病模型小鼠肠道菌群的影响
魏建敏1,2, 杨华连1,2, 陈莉1,2*, 卢红梅1,2, 石庆叠1,2, 张祥瑞1,2, 涂青1,2
1(贵州省发酵工程与生物制药重点实验室,贵州 贵阳,550025)
2(贵州大学 酿酒与食品工程学院,贵州 贵阳,550025)
Effect of fruit mulberry tea on intestinal microbiota of type 2 diabetic mice based on high-throughput sequencing
WEI Jianmin1,2, YANG Hualian1,2, CHEN Li1,2*, LU Hongmei1,2, SHI Qingdie1,2, ZHANG Xiangrui1,2, TU Qing1,2
1(Guizhou Key Laboratory of Fermentation Engineering and Biopharmacy, Guiyang 550025, China)
2(School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China)
下载:  HTML  PDF (10734KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究果桑茶对2型糖尿病模型小鼠肠道菌群的调节作用,利用高脂饮食联合链脲佐菌素诱导构建2型糖尿病小鼠模型,收集不同组别小鼠粪便进行高通量测序,分析其菌群变化情况。结果表明,2型糖尿病的产生会导致小鼠肠道菌群失调,其中模型对照组小鼠肠道菌群多样性最低,其部分有益菌相对丰度降低,有害菌相对丰度升高。与之相比,果桑茶茶粉剂量组(GDm组)和果桑茶水提物剂量组(GDh组)显著增加了Muribaculaceae_unclassified、艾克曼菌属(Akkermansia)、毛螺菌科(Lachnospiraceae)等有益菌群的丰度,丰富了菌群多样性,其中GDm组肠道菌群与正常对照组最接近,调节效果最为显著。该研究证明了果桑茶能有效调节2型糖尿病模型小鼠肠道菌群结构和丰度,促进肠道菌群良性发展,为果桑降糖保健产品的开发提供理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
魏建敏
杨华连
陈莉
卢红梅
石庆叠
张祥瑞
涂青
关键词:  果桑茶  2型糖尿病  肠道菌群  菌群分析  高通量测序    
Abstract: In order to study the regulatory effect of fruit mulberry tea on intestinal microbiota in type 2 diabetes mice model, high-fat diet combined with streptozotocin was used to induce the type 2 diabetic mice model. The feces of mice from different groups were collected to analyze the changes in the microbiota using high-throughput sequencing. The results showed that the occurrence of type 2 diabetes could lead to the imbalance of intestinal microbiota in mice, among which the diversity of intestinal microbiota in the control group was the lowest, the relative abundance of some beneficial bacteria was decreased, and the relative abundance of harmful bacteria was increased. In contrast, fruit mulberry tea powder dose group (GDm group) and fruit mulberry tea extract dose group (GDh group) significantly increased the relative abundance of Muribaculaceae_unclassified, Akkermansia, Lachnospiraceae and other beneficial bacteria, enriching the diversity of bacteria. The intestinal microbiota of the GDm group was the closest to that of the normal control group, and the regulation effect was the most significant. This research proves that fruit mulberry tea can effectively regulate the structure and abundance of intestinal microbiota in type 2 diabetes model mice, promote the benign development of intestinal microbiota, providing theoretical basis for the development of fruit mulberry hypoglycemic health products.
Key words:  fruit mulberry tea    type 2 diabetes    intestinal microbiota    microbiota analysis    high throughput sequencing
收稿日期:  2020-11-26      修回日期:  2020-12-31           出版日期:  2021-10-25      发布日期:  2021-11-18      期的出版日期:  2021-10-25
基金资助: 贵州省科技支撑计划项目(黔科合支撑[2019]2371号)
作者简介:  硕士研究生(陈莉副教授为通讯作者,E-mail:3152539622@qq.com)
引用本文:    
魏建敏,杨华连,陈莉,等. 基于高通量测序分析果桑茶对2型糖尿病模型小鼠肠道菌群的影响[J]. 食品与发酵工业, 2021, 47(20): 75-82.
WEI Jianmin,YANG Hualian,CHEN Li,et al. Effect of fruit mulberry tea on intestinal microbiota of type 2 diabetic mice based on high-throughput sequencing[J]. Food and Fermentation Industries, 2021, 47(20): 75-82.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.026261  或          http://sf1970.cnif.cn/CN/Y2021/V47/I20/75
[1] 王娜, 林彩霞, 徐李玲, 等.青钱柳双瓜袋泡茶对2型糖尿病小鼠血糖、血脂与肝肾功能的影响及机制研究[J].广西医科大学学报, 2019, 36(12):1 889-1 894.
WANG N, LIN C X, XU L L, et al.Effects and mechanisms of Paliurus Duplex Cucumis tea bags on blood glucose, serum lipid and liver and kidney function in type 2 diabetic mice[J].Journal of Guangxi Medical University, 2019, 36(12):1 889-1 894.
[2] 何静, 高婉婷, 海勒, 等.驼乳对2型糖尿病小鼠肝脏损伤的保护作用[J].中国食品学报, 2019, 19(7):36-41.
HE J, GAO W T, HAI L, et al.Protective effect of camel milk on liver injury in type 2 diabetic mice[J].Journal of Chinese Institute of Food Science and Technology, 2019, 19(7):36-41.
[3] WANG L M, GAO P, ZHANG M, et al.Prevalence and ethnic pattern of diabetes and prediabetes in China in 2013[J].JAMA, 2017, 317(24):2 515-2 523.
[4] HOLMAN N, YOUNG B, GADSBY R.Current prevalence of type 1 and type 2 diabetes in adults and children in the UK[J].Diabetic Medicine, 2015, 32(9):1 119-1 120.
[5] MOUSTAFA P E, ABDELKADER N F, AWDAN S A, et al.Extracellular matrix remodeling and modulation of inflammation and oxidative stress by sulforaphane in experimental diabetic peripheral neuropathy[J].Inflammation, 2018, 41(4):1 460-1 476.
[6] 焦丹, 李浩霞, 吴丹丹, 等.魔芋低聚糖缓解高糖水平诱发的大鼠代谢综合征及相关机制[J].食品科学, 2019,40(13):137-142.
JIAO D, LI H X, WU D D, et al.Alleviatory effect and underlying mechanism of konjac oligosaccharides on high glucose induced-metabolic syndrome in rats[J].Food Science, 2019, 40(13):137-142.
[7] SAGBO I J, VAN DE VENTER M, KOEKEMOER T, et al.In vitro antidiabetic activity and mechanism of action of Brachylaena elliptica (thunb.) DC[J].Evidence-based Complementary and Alternative Medicine:ECAM, 2018.DOI:10.1155/2018/4170372.
[8] 亓桂成, 王翠香, 韩朝晖, 等.不同处理方法对台湾果桑硬枝扦插的影响[J].山东林业科技, 2018, 48(3):49-51;56.
QI G C, WANG C X, HAN Z H, et al.Effects of different treatment methods on hardwood cutting of mulberry in Taiwan[J].Journal of Shandong Forestry Science and Technology, 2018, 48(3):49-51;56.
[9] 姜贝贝, 罗阳, 王洪荣.桑叶的营养价值及作为畜禽饲料的研究进展[J].饲料工业, 2017, 38(5):51-54.
JIANG B B, LUO Y, WANG H R.The nutritional value of mulberry leaf and its application in the livestock feed[J].Feed Industry, 2017, 38(5):51-54.
[10] 余婉莎. 桑枝多糖提取与结构分析及生物活性探究[D].重庆:西南大学, 2018.
YU W S.Extraction, structure analysis and biological activity of polysaccharides from ramulus mori[D].Chongqing:Southwest University, 2018.
[11] 段志涛. 桑白皮有效部位工艺、质控及药效学研究[D].广州:广州中医药大学, 2013.
DUAN Z T.Study on extraction, purification and quality standard research of the total effective parts of cortex mori and discussing on lowering blood sugar and blood lipid[D].Guangzhou:Guangzhou University of Chinese Medicine, 2013.
[12] LIU Q P, LI X, LI C Y, et al.1-deoxynojirimycin alleviates insulin resistance via activation of insulin signaling PI3K/AKT pathway in skeletal muscle of db/db mice[J].Molecules, 2015, 20(12):21 700-21 714.
[13] 郭丽璇, 胡琼英, 熊大迁.肠道菌群调控2型糖尿病发生发展的研究进展[J].实用医学杂志, 2020, 36(9):1 142-1 147.
GUO L X, HU Q Y, XIONG D Q.Research progresses of intestinal flora regulating the occurrence and the development of type 2 diabetes mellitus[J].The Journal of Practical Medicine, 2020, 36(9):1 142-1 147.
[14] PRAKASH S, RODES L, COUSSA-CHARLEY M, et al.Gut microbiota:Next frontier in understanding human health and development of biotherapeutics[J].Biologics, 2011, 5:71-86.
[15] 李沫. 普洱茶通过作用于肠道菌群从而对糖尿病前期患者糖脂代谢影响的机制研究[D].长春:吉林大学, 2020.
LI M.Mechanism of Puer tea improving glucose and lipid metabolism in pre-diabetic patients by effecting on intestinal microflora[D].Changchun:Jilin University, 2020.
[16] ZHAO L P, ZHANG F, DING X Y, et al.Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes[J].Science, 2018, 359(6 380):1 151-1 156.
[17] MORENO-INDIAS I, CARDONA F, TINAHONES F J, et al.Impact of the gut microbiota on the development of obesity and type 2 diabetes mellitus[J].Frontiers in Microbiology, 2014, 5:190.
[18] LARSEN N, VOGENSEN F K, VAN D BERG F W J, et al.Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults[J].PloS One, 2010, 5(2):e9085.
[19] SEDIGHI M, RAZAVI S, NAVAB-MOGHADAM F, et al.Comparison of gut microbiota in adult patients with type 2 diabetes and healthy individuals[J].Microbial Pathogenesis,2017, 111:362-369.
[20] 何雪冬, 王芳, 王瑶, 等.糖尿病患者肠道菌群特征及其相关性的系统评价[J].中国微生态学杂志, 2020, 32(4):397-403.
HE X D, WANG F, WANG Y, et al.Characteristics of intestinal flora in diabetic patients and their correlation:A systematic review[J].Chinese Journal of Microecology, 2020, 32(4):397-403.
[21] CALLAHAN B J, MCMURDIE P J, ROSEN M J, et al.DADA2:High-resolution sample inference from illumina amplicon data[J].Nature Methods, 2016, 13(7):581-583.
[22] 孙鹏鹏. 益生菌发酵枇杷提取物的功效学研究[D].济南:山东大学, 2019.
SUN P P.Study on the efficacies of probiotics fermented loquat extracts[D].Jinan:Shandong University, 2019.
[23] SHENG Y,ZHENG S J,ZHANG C H, et al.Mulberry leaf tea alleviates diabetic nephropathy by inhibiting PKC signaling and modulating intestinal flora[J].Journal of Functional Foods, 2018, 46:118-127.
[24] BUNKER J J, DREES C, WATSON A R, et al.B cell superantigens in the human intestinal microbiota[J].Science Translational Medicine, 2019, 11(507):e9356.
[25] YAN X, YANG C F, LIN G P, et al.Antidiabetic potential of green seaweed enteromorpha prolifera flavonoids regulating insulin signaling pathway and gut microbiota in type 2 diabetic mice[J].Journal of Food Science, 2019,84(1):165-173.
[26] BEZIRTZOGLOU E,TSIOTSIAS A,WELLING G W.Microbiota profile in feces of breast and formula-fed newborns by using fluorescence in situ hybridization (FISH)[J].Anaerobe, 2011, 17(6):478-482.
[27] QIN J J, LI R Q, RAES J, et al.A human gut microbial gene catalogue established by metagenomic sequencing[J].Nature, 2010, 464(7 285):59-65.
[28] 刘尔卓, 吴忠坤, 赵紫薇, 等.基于高通量测序分析鲜槟榔水提液对于小鼠肠道菌群及免疫指标的影响[J].食品研究与开发, 2020, 41(10):28-33;166.
LIU E Z, WU Z K, ZHAO Z W, et al.High-throughput sequencing analysis of fresh Areca nut extract on intestinal flora and immune indexes of mice[J].Food Research and Development, 2020, 41(10):28-33;166.
[29] FENG Z, LONG W M, HAO B H, et al.A human stool-derived bilophila wadsworthia strain caused systemic inflammation in specific-pathogen-free mice[J].Gut Pathogens, 2017, 9(1):59.
[30] CAN I P D,DE VOS W M.Next-generation beneficial microbes:The case of Akkermansia muciniphila[J].Frontiers in Microbiology, 2017, 8:1 765.
[31] 杨莉, 杨卫星, 张智芳, 等.高通量测序研究德昂酸茶对高脂饮食小鼠肠道微生物的影响[J].扬州大学学报(农业与生命科学版), 2020, 41(2):100-106.
YANG L, YANG W X, ZHANG Z F, et al.Effect of De′ang pickled tea on intestinal microorganisms in mice with high- fat diet based on high-throughput sequencing[J].Journal of Yangzhou University(Agricultural and Life Science Edition), 2020, 41(2):100-106.
[32] GUO X J, CHENG M, ZHANG X, et al.Green tea polyphenols reduce obesity in high-fat diet-induced mice by modulating intestinal microbiota composition[J].International Journal of Food Science & Technology, 2017,52(8):1 723-1 730.
[1] 史瑛, 冯欣静, 周志磊, 姬中伟, 徐岳正, 毛健. 黄酒多糖对炎症性肠病及便秘作用机制的研究进展[J]. 食品与发酵工业, 2021, 47(9): 275-283.
[2] 贾叶, 包斌, 马明, 魏婷. 蚕蛹蛋白源肠内营养混悬剂对二型糖尿病小鼠肠道菌的影响[J]. 食品与发酵工业, 2021, 47(8): 62-66.
[3] 王路, 张蕾, 郑皎碧, 王琼熠, 范辉. 发酵制品调控糖脂代谢性疾病作用机制的研究进展[J]. 食品与发酵工业, 2021, 47(7): 292-300.
[4] 刘梦琦, 朱媛媛, 倪慧, 王玉荣, 郭壮. 荆州地区霉豆渣真菌多样性研究[J]. 食品与发酵工业, 2021, 47(6): 241-246.
[5] 李娜, 崔梦君, 马佳佳, 雷炎, 郭壮, 张振东. 基于Illumina MiSeq测序和传统可培养方法的洪湖鲊广椒乳酸菌多样性研究[J]. 食品与发酵工业, 2021, 47(4): 110-115.
[6] 尚雪娇, 方三胜, 朱媛媛, 赵慧君, 郭壮. 霉豆渣细菌多样性解析及基因功能预测[J]. 食品与发酵工业, 2021, 47(3): 36-42.
[7] 黄瑜, 杨帆, 李江华, 杨玉波, 堵国成, 王莉, 刘延峰. 小麦原料微生物组成对高温大曲风味的影响[J]. 食品与发酵工业, 2021, 47(20): 22-29.
[8] 任宇婷, 陈春利, 朱永亮, 郭昊翔, 陈忠军, 孙子羽, 满都拉. 广西扶绥酸粥中微生物组成及营养成分分析[J]. 食品与发酵工业, 2021, 47(20): 37-43.
[9] 王子媛, 宋庭羽, 邵毅君, 凌霞, 侯强川, 郭壮. 慈利和古丈地区酸肉细菌多样性差异研究及其功能预测[J]. 食品与发酵工业, 2021, 47(20): 126-132.
[10] 牟娟, 刘芳, 王兴洁, 刘爱平, 敖晓琳, 李建龙, 刘书亮. 胀气变质食醋理化指标及细菌多样性分析[J]. 食品与发酵工业, 2021, 47(20): 278-284.
[11] 王俊奇, 黄卫红, 李双彤, 袁建军, 陈洪彬, 马应伦, 张秋芳. 永春老醋不同生产阶段细菌和真菌多样性动态变化特征分析[J]. 食品与发酵工业, 2021, 47(2): 38-44.
[12] 徐珒昭, 汤梦琪, 徐境含, 滕国新, 许晓曦. 焦谷氨酸对高盐饮食小鼠肠道健康及肠道菌群的作用[J]. 食品与发酵工业, 2021, 47(2): 102-108.
[13] 张倩, 韩保林, 李子健, 谢军, 余东, 邹永芳, 郭辉祥, 文静, 张玲玲, 罗惠波, 黄丹. 浓香型白酒包包曲微生物种群多样性及形成机制[J]. 食品与发酵工业, 2021, 47(18): 99-106.
[14] 杨柳, 高良锋, 沈明浩, 姜斌, 任大勇. 朝鲜族辣白菜在自然发酵过程中菌群结构与主要呈味物质的相关性[J]. 食品与发酵工业, 2021, 47(17): 61-68.
[15] 刘俊, 王阳, 熊子豪, 陈文美, 邵艳红, 涂宗财. 糖基化、磷酸化及乙酰化修饰对α-乳白蛋白致敏性和人肠道菌群的影响[J]. 食品与发酵工业, 2021, 47(17): 91-97.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn