Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (15): 84-89    DOI: 10.13995/j.cnki.11-1802/ts.026264
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
发酵火麻仁蛋白粉对HepG2细胞氧化应激损伤的保护作用
李海枝1,2, 王曙宾3, 郭珊珊3, 于有强1,2, 刘义凤1,2, 潘聪1,2, 吴逸民1,2, 周志桥1,2, 夏凯1,2*, 李雅丽1,2*
1(中国食品发酵工业研究院有限公司,北京,100015)
2(功能主食创制与慢病营养干预北京市重点实验室,北京,100015)
3(汉义生物科技(北京)有限公司,北京,100020)
Effect of fermented hemp seed protein on the cellular oxidative stress with HepG2 cellular model
LI Haizhi1,2, Wang Shubin3, GUO Shanshan3, YU Youqiang1,2, LIU Yifeng1,2, PAN Cong1,2, WU Yimin1,2, ZHOU Zhiqiao1,2, XIA Kai1,2*, LI Yali1,2*
1(China National Research Institute of Food Fermentation Industries Co.Ltd.,Beijing 100015,China)
2(Functional Staple Food Creation and Nutrition Intervention for Chronic Diseases in Beijing Key Laboratory,Beijing 100015,China)
3(Hanyi Biotechnology (Beijing) Co.Ltd.,Beijing 100020,China)
下载:  HTML  PDF (2007KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为评价发酵火麻仁蛋白粉的抗氧化能力,利用偶氮二异丁基二盐酸盐(azodiisobutyl dicarbonate,AAPH)诱导HepG2细胞建立氧化应激模型,通过测定细胞内活性氧(reactive oxygen species,ROS)自由基、丙二醛(malondialdehyde,MDA)含量以及超氧化物歧化酶(superoxide dismutase,SOD)和谷胱甘肽过氧化物酶(glutathione peroxidase,GSH-Px)的活力,评价发酵火麻仁蛋白粉的抗氧化活性;并且对HepG2细胞抗氧化相关基因的表达进行研究。结果表明,发酵火麻仁蛋白粉显著增加SOD、GSH-Px活力(P<0.05),降低胞内ROS含量与MDA含量,发酵火麻仁粉抗氧化酶基因NQO1、Nrf2HO-1 mRNA表达水平增加,表明发酵火麻仁蛋白粉能够激活Nrf2通路,减轻AAPH诱导的HepG2氧化应激损伤作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李海枝
王曙宾
郭珊珊
于有强
刘义凤
潘聪
吴逸民
周志桥
夏凯
李雅丽
关键词:  发酵火麻仁蛋白粉  HepG2细胞  氧化应激  抗氧化  mRNA    
Abstract: To evaluate the antioxidant capacity of fermented hemp seed protein powder, oxidative stress of HepG2 cells was induced by 2,2′-azobis(2-methylpropionamidine)dihydrochloride (AAPH) to establish the model. The antioxidant activity was measured by reactive oxygen species (ROS), malondialdehyde (MDA), the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px),and the expression of antioxidant related genes in HepG2 cells. The results showed that the activities of SOD and GSH-Px were significantly increased (P<0.05), while ROS and MDA were significantly reduced (P<0.05) after the treatment with fermented hemp seed protein powder. The expression levels of NQO1, Nrf2 and HO-1 mRNA in fermented hemp seed protein powder were increased. The results showed that the Nrf2 pathway was activated by fermented hemp seed protein powder to alleviate the oxidative stress damage of HepG2 induced by AAPH.
Key words:  fermented hemp seed protein powder    HepG2 cell    oxidative stress    anti-oxidation    mRNA
收稿日期:  2020-11-24      修回日期:  2020-12-04           出版日期:  2021-08-15      发布日期:  2021-08-23      期的出版日期:  2021-08-15
基金资助: 国家重点研发计划项目(2018YFD0400900)
作者简介:  硕士研究生(夏凯高级工程师和李雅丽工程师为共同通讯作者,E-mail:xiakaiphd@126.com;cnliyali@163.com)
引用本文:    
李海枝,王曙宾,郭珊珊,等. 发酵火麻仁蛋白粉对HepG2细胞氧化应激损伤的保护作用[J]. 食品与发酵工业, 2021, 47(15): 84-89.
LI Haizhi,Wang Shubin,GUO Shanshan,et al. Effect of fermented hemp seed protein on the cellular oxidative stress with HepG2 cellular model[J]. Food and Fermentation Industries, 2021, 47(15): 84-89.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.026264  或          http://sf1970.cnif.cn/CN/Y2021/V47/I15/84
[1] MITTLER R.Oxidative stress,antioxidants and stress tolerance[J].Trends in Plant Science,2002,7(9):405-410.
[2] SITI H,KAMISAH Y,KAMSIAH J.The role of oxidative stress,antioxidants and vascular inflammation in cardiovascular disease:A review[J].Vascular Pharmacology,2015,71:40-56.
[3] ZHU X W,RAINA A K,LEE H G,et al.Oxidative stress signalling in Alzheimer’s disease[J].Brain Research,2004,1000(1-2):32-39.
[4] MEHTA J,RAYALAM S,WANG X Y,et al.Cytoprotective effects of natural compounds against oxidative stress[J].Antioxidants,2018,7(10):147
[5] MITTLER R.Oxidative stress,antioxidants and stress tolerance[J].Trends in Plant Science,2002,7(9):405-410.
[6] 徐清萍, 钟桂芳,孟君.抗氧化剂抗氧化方法研究进展[J].食品工程,2007(2):23-25.XU Q P,ZHONG G F,MENG J.Research progress on evaluation method of antioxidants[J].Food Engineering,2007(2):23-25.
[7] HE Y,BU L J,XIE H P,et al.Antioxidant activities and protective effects of duck embryo peptides against H2O2-induced oxidative damage in HepG2 cells[J].Poultry Science,2019,98(12):7 118-7 128.
[8] ZHUANG Y L,MA Q Y,GUO Y,et al.Protective effects of rambutan (Nephelium lappaceum) peel phenolics on H2O2-induced oxidative damages in HepG2 cells and d-galactose-induced aging mice[J].Food and Chemical Toxicology,2017,108:554-562.
[9] WANG H L,LIU J,LIU X Y,et al.Protective effects of blueberry against hydrogen peroxide-induced oxidative stress in HEPG2 cells[J].British Food Journal,2019,121(11):2 809-2 820.
[10] ZHANG H J,WANG J,LIU Y L,et al.Wheat bran feruloyl oligosaccharides ameliorate AAPH-induced oxidative stress in HepG2 cells via Nrf2 signalling[J].Journal of Functional Foods,2016,25:333-340.
[11] YAO Y J,WANG H L,XU F R,et al.Insoluble-bound polyphenols of adlay seed ameliorate H2O2-induced oxidative stress in HepG2 cells via Nrf2 signalling[J].Food Chemistry,2020,325:126 865.
[12] 田兆飞, 刘诗涵,李立佳,等.火麻仁及其制品研究进展[J].农业科技与装备,2017(12):53-54.TIAN Z F,LIU S H,LI L J,et al.Research progress on hemp seed and its products[J].Agricultural Science & Technology and Equipment,2017(12):53-54.
[13] 林金莺. 火麻仁蛋白水解及其抗氧化肽的研究[D].广州:华南理工大学,2010.LIN J Y.The research on protein hydrolysis and the antioxidative peptide derived from hempseed (Cannabis sativa L.)[D].Guangzhou: South China University of Technology,2010.
[14] 韦凤, 涂冬萍,王柳萍.火麻仁食用开发和药理作用研究进展[J].中国老年学杂志,2015,35(12):3 486-3 488.WEI F,TU D P,WANG L P.Progress in edible development and pharmacological action of hempseed[J].Chinese Journal of Gerontology,2015,35(12):3 486-3 488.
[15] 沈峰, 尤华智,聂国荣.火麻仁蛋白对荷瘤小鼠免疫调节功能的影响[J].广州医药,2013,44(6):40-41.SHEN F,YOU H Z,NIE G R.Effect of hempseed protein on immune regulation function of tum origin-bearing mice[J].Guangzhou Medical Journal,2013,44(6):40-41.
[16] 刁秋霞, 李硕,王晶,等.火麻仁酶解发酵液对小鼠抗疲劳的作用[J].武警医学,2013,24(11):945-947.DIAO Q X,LI S,WANG J,et al.Effect of hempseed fermented liquid on fatiguing mices[J].Medical Journal of the Chinese People’s Armed Police Forces,2013,24(11):945-947.
[17] WANG Q L,XIONG Y L.Processing,nutrition,and functionality of hempseed protein:A review[J].Comprehensive Reviews in Food Science and Food Safety,2019,18(4):936-952.
[18] 郝娇月. 酶解发酵工艺对复合杂粮抗氧化活性的影响研究及产品研发[D].长春:吉林大学,2019.HAO J Y.The effect of enzymolysis and fermentation on antioxidant activity of composite grains and product development[D].Changchun:Jilin University,2019.
[19] 胡乔迁. 酶解芝麻蛋白肽及其亚铁螯合物的制备与特性[D].扬州:扬州大学,2019.HU Q Q.Preparation and properties of enzymatic hydrolysis of sesame protein peptide and ferrous chelate[D].Yangzhou:Yangzhou University,2019.
[20] YOSHIOKA Y,LI X,ZHANG T S,et al.Black soybean seed coat polyphenols prevent AAPH-induced oxidative DNA-damage in HepG2 cells[J].Journal of Clinical Biochemistry & Nutrition,2017,60(2):108-114.
[21] ZUO L,ZHOU T,PANNELL B K,et al.Biological and physiological role of reactive oxygen species—the good,the bad and the ugly[J].Acta Physiologica,2015,214(3):329-348.
[22] TAMMA G,VALENTI G,GROSSINI E,et al.Aquaporin membrane channels in oxidative stress,cell signaling,and aging:recent advances and research trends[J].Oxidative Medicine and Cellular Longevity,2018:1 501 847.
[23] 温斐婷. 基于HepG2细胞研究高浓度槲皮素促氧化的作用和机制[D].无锡:江南大学,2016.WEN F T.The prooxidant effect of high concentration quercetin on HepG2 cells and its potential mechanism[D].Wuxi:Jiangnan University,2016.
[24] 朱俊杰. 大青叶抵御HepG2细胞氧化应激损伤及其机制研究[D].海口:海南大学,2018.ZHU J J.Study on cytoprotective effects and mechanisms of Clerodendrum cyrtophyllum Turcz leaves against oxidative stress in HepG2 cells[D].Haikou:Hainan University,2018.
[25] LU M C,JI J N,JIANG Z Y.The keap1-Nrf2-ARE pathway as a potential preventive and therapeutic target:An update[J].Medicinal Research Reviews,2016,36(5):924-963.
[26] LOBODA A,DAMULEWICZ M,PYZA E.Role of Nrf2/HO-1 system in development,oxidative stress response and diseases:an evolutionarily conserved mechanism[J].Cellular and Molecular Life Sciences,2016,73(17):3 221-3 247.
[27] CHOI Y H.Berberine hydrochloride protects C2C12 myoblast cells against oxidative stress-induced damage via induction of Nrf-2-mediated HO-1 expression[J].Drug Development Research,2016,77(6):310-318.
[1] 张涛, 邓思, 陈艳红, 杜希萍. 虾青素和β-胡萝卜素的抗氧化活性及其协同作用研究[J]. 食品与发酵工业, 2021, 47(9): 8-15.
[2] 冯艳钰, 臧延青. 三种小麦麸皮总黄酮的体外抗氧化活性[J]. 食品与发酵工业, 2021, 47(9): 16-24.
[3] 刘晓晨, 杨光, 杨波, 周盛敏. 光照萌发对亚麻籽油中脂质伴随物含量的影响[J]. 食品与发酵工业, 2021, 47(9): 208-214.
[4] 余祥英, 陈晓纯, 李玉婷, 李琳. 陈皮挥发油组成分析及其单体的抗氧化性研究[J]. 食品与发酵工业, 2021, 47(9): 245-252.
[5] 曹联飞, 何程豪, 孙玉敬. 大蜜蜂和黑大蜜蜂蜂蜜的理化指标及抗氧化活性分析[J]. 食品与发酵工业, 2021, 47(9): 262-267.
[6] 王春幸, 张东, 贺稚非, 李芳, 陈茹, 李洪军. 天然保鲜剂的作用机理及其在调理肉制品中的应用研究进展[J]. 食品与发酵工业, 2021, 47(9): 328-334.
[7] 牛娜娜, 沙如意, 杨陈铭, 王珍珍, 茹语婷, 戴静, 韩洪庚, 张黎明, 毛建卫. 预处理工艺对黑蒜功能性成分、抗氧化活性影响及相关性研究[J]. 食品与发酵工业, 2021, 47(8): 67-75.
[8] 郭佳, 李云飞, 李诗佳, 关红霞, 陈晓光. 酸浆宿萼抗衰老作用及机理研究[J]. 食品与发酵工业, 2021, 47(8): 140-144.
[9] 孟洋, 卢红梅, 杨双全, 章之柱, 陈莉, 刘兵, 王利萍. 铁皮石斛复配花茶制作工艺及其功能性研究[J]. 食品与发酵工业, 2021, 47(8): 170-179.
[10] 王子涵, 向敏, 徐茂, 蒋和体. 响应面优化黑果腺肋花楸汁澄清工艺及其抗氧化活性评价[J]. 食品与发酵工业, 2021, 47(8): 189-196.
[11] 姚丽文, 周宇芳, 孙继鹏, 王家星, 廖妙飞, 郑斌, 王芮, 邓尚贵, 相兴伟. 厚壳贻贝多糖对葡聚糖硫酸钠诱导的结肠炎改善作用[J]. 食品与发酵工业, 2021, 47(7): 109-115.
[12] 顾欣, 高涛, 刘梦雅, 丛之慧, 张诚雅, 肖乐艳, 李迪, 胡景涛. 梁平柚柚皮多糖的提取、结构解析及抗氧化能力研究[J]. 食品与发酵工业, 2021, 47(7): 137-145.
[13] 刘婷, 周欣, 赵超, 龚小见, 陈华国. 植物多糖对肾损伤干预效果及作用机制研究进展[J]. 食品与发酵工业, 2021, 47(7): 269-277.
[14] 王路, 张蕾, 郑皎碧, 王琼熠, 范辉. 发酵制品调控糖脂代谢性疾病作用机制的研究进展[J]. 食品与发酵工业, 2021, 47(7): 292-300.
[15] 陈思雨, 梁鑫, 雷钰, 孔倩倩, 万欣, 张宝善. 豆腐黄浆水发酵阶段产物抗氧化成分和色泽变化[J]. 食品与发酵工业, 2021, 47(6): 34-41.
[1] YUAN Feng-jiao et al . Heterologous Expression of phenylpyruvate reductase from Lactobacillus plantarum and Its Application in the Preparation of Phenyllactic Acid[J]. Food and Fermentation Industries, 2017, 43(11): 16 -21 .
[2] WU Xiang-yi et al . Effect of yak milk casein hydrolysates on protein carbonyl content and activity of antioxidant enzymes of oxidative damaged HepG2 cells induced by H2O2[J]. Food and Fermentation Industries, 2017, 43(11): 34 -38 .
[3] BAN Jia et al . Use of molasses for DHA production by Schizochytrium sp.[J]. Food and Fermentation Industries, 2017, 43(11): 39 -43 .
[4] FAN Zi-wei et al. Study on the physicochemical properties ofYunnansoft rice starch[J]. Food and Fermentation Industries, 2017, 43(11): 87 .
[5] ZHANG Yang et al. Effects of Material Composition on the Oil Absorption of Restructured Potato Chips[J]. Food and Fermentation Industries, 2017, 43(11): 140 .
[6] FENG Hui-jun et al. The research advance of genus Therwoactinowycer[J]. Food and Fermentation Industries, 2017, 43(11): 257 .
[7] SONG Yuan-de. Establishmentandcomparisonofnew andoldeditionofqualification conditionsforfoodinspectionagency[J]. Food and Fermentation Industries, 2017, 43(11): 268 .
[8] YU Qing-lin et al. Fermentation optimization of recombinant Yarrowia lipolytica for its efficient succinic acid production[J]. Food and Fermentation Industries, 0, (): 1 .
[9] . Preparation of Resistant Starch with Enzymes Process[J]. Food and Fermentation Industries, 2002, 28(5): 6 .
[10] . Study on the Extraction of Rhodiola Functional Composition and the Development of Its Health Tea[J]. Food and Fermentation Industries, 2002, 28(5): 47 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn