Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (9): 284-292    DOI: 10.13995/j.cnki.11-1802/ts.026302
  综述与专题评论 本期目录 | 过刊浏览 | 高级检索 |
人乳寡糖的研究进展
李晨晨, 李梦丽, 张涛*
(食品科学与技术国家重点实验室(江南大学),江苏 无锡,214122)
Research progress of human milk oligosaccharides
LI Chenchen, LI Mengli, ZHANG Tao*
(State Key Laboratory of Food Science and Technology,Jiangnan University,Wuxi 214122,China)
下载:  HTML  PDF (4313KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 人乳寡糖(human milk oligosaccharides,HMOs)是存在于母乳中的一类重要低聚糖,可作为功能性成分添加到婴幼儿配方奶粉中,对婴幼儿生长发育具有重要作用。研究表明,HMOs可以作为益生元维持肠道微生物环境平衡,具有免疫防御调节、刺激婴幼儿大脑发育及认知等方面的功能。文章对HMOs的结构组成、合成方法以及分离检测进行了总结,以期为后续研究提供基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李晨晨
李梦丽
张涛
关键词:  人乳寡糖  结构  功能  分离检测  合成    
Abstract: Human milk oligosaccharides (HMOs) are important oligosaccharides in breast milk. They can be added to infant formula milk as functional ingredients and play an important role in the growth of infants and young children. HMOs can be used as prebiotics to maintain the balance of the intestinal microbial environment, to regulate the immune defense system, and to stimulate brain development and cognition functions of infants. This article summarizes the structural composition, synthesis methods, as well as separation and detection of HMOs in order to provide a basis for subsequent research.
Key words:  human milk oligosaccharide    separation and detection    synthesis
收稿日期:  2020-11-28      修回日期:  2020-12-23           出版日期:  2021-05-15      发布日期:  2021-06-03      期的出版日期:  2021-05-15
基金资助: 十三五重点研发计划项目(2017YFD0400600)
作者简介:  硕士研究生(张涛教授为通讯作者,E-mail:zhangtao@jiangnan.edu.cn)
引用本文:    
李晨晨,李梦丽,张涛. 人乳寡糖的研究进展[J]. 食品与发酵工业, 2021, 47(9): 284-292.
LI Chenchen,LI Mengli,ZHANG Tao. Research progress of human milk oligosaccharides[J]. Food and Fermentation Industries, 2021, 47(9): 284-292.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.026302  或          http://sf1970.cnif.cn/CN/Y2021/V47/I9/284
[1] BALLARD O,MORROW A L.Human milk composition:Nutrients and bioactive factors[J].Pediatric Clinics of North America,2013,60(1):49-74.
[2] ZIVKOVIC A M,GERMAN J B,LEBRILLA C B,et al.Human milk glycobiome and its impact on the infant gastrointestinal microbiota[J].PNAS,2011,108(S1):4 653-4 658.
[3] GYÖRGY P,KUHN R,ROSE C S,et al.Bifidus factor.II.Its occurrence in milk from different species and in other natural products[J].Archives of Biochemistry & Biophysics,1954,48(1):202-208.
[4] VANDENPLAS Y,BERGER B,CARNIELLI V P,et al.Human milk oligosaccharides:2′-fucosyllactose (2′-FL) and lacto-N-neotetraose (LNnT) in infant formula[J].Nutrients,2018,10(9):E1161.
[5] SPRENGER G A,BAUMGRTNER F,ALBERMANN C.Production of human milk oligosaccharides by enzymatic and whole-cell microbial biotransformations[J].Journal of Biotechnology,2017,258(20):79-91.
[6] 逯莹莹,刘鹏,孙景珠,等.母乳低聚糖的研究进展[J].中国乳品工业,2018,46(12):23-28;33.
LU Y Y,LIU P,SUN J Z,et al.Research progress of human milk oligosaccharides[J].China Dairy Industry,2018,46(12):23-28;33.
[7] 徐铮,李娜,陈盈利,等.人乳寡糖2′-FL和3-FL的生物制备研究进展[J].生物工程学报,2021,37(12):2 767-2 778.
XU Z,LI N,CHEN Y L,et al.Recent advances in the bio-production of human milk oligosaccharides 2′-FL and 3-FL[J].Chinese Journal of Biotechnology,2021,37(12):2 767-2 778.
[8] 翟娅菲,禹晓,相启森,等.人乳寡糖体外合成研究进展[J].食品工业科技,2018,39(5):348-352.
ZHAI Y F,YU X,XIANG Q S,et al.Research progress of human milk oligosaccharides synthesis in vitro[J].Science and Technology of Food Industry,2018,39(5):348-352.
[9] FAIJES M,VILATERSANA M C,PLANAS A,et al.Enzymatic and cell factory approaches to the production of human milk oligosaccharides[J].Biotechnology Advances,2019,37(5):667-697.
[10] REID G.Probiotics and prebiotics-Progress and challenges[J].International Dairy Journal,2008,18(10-11):969-975.
[11] BODE L,KUHN L,KIM H Y,et al.Human milk oligosaccharide concentration and risk of postnatal transmission of HIV through breastfeeding[J].American Journal of Clinical Nutrition,2012,96(4):831-839.
[12] THONGARAM T,HOEFLINGER J L,CHOW J M,et al.Human milk oligosaccharide consumption by probiotic and human-associated bifidobacteria and lactobacilli[J].Journal of Dairy Science,2017,100(10):7 825-7 833.
[13] PUCCIO G,ALLIET P,CAJOZZO C,et al.Effects of infant formula with human milk oligosaccharides on growth and morbidity:A randomized multicenter trial[J].Journal of Pediatric Gastroenterology & Nutrition,2017,64(4):624-631.
[14] RUIZ-PALACIOS G M,CERVANTES L E,RAMOS P,et al.Campylobacter jejuni binds intestinal H(O) antigen (Fucα1,2Galβ1,4GlcNAc),and fucosyloligosaccharides of human milk inhibit its binding and infection[J].Journal of Biological Chemistry,2003,278(16):14 112-14 120.
[15] MORROW A L,RUIZ-PALACIOS G M,JIANG X,et al.Human-milk glycans that inhibit pathogen binding protect breast-feeding infants against infectious diarrhea[J].The Journal of Nutrition,2005,135(5):1 304-1 307.
[16] MOUKARZEL S,BODE L.Human milk oligosaccharides and the preterm infant:A journey in sickness and in health[J].Clinics in Perinatology,2017,44(1):193-207.
[17] HEGAR B,WIBOWO Y,BASROWI R W,et al.The role of two human milk oligosaccharides,2′-fucosyllactose and lacto-N-neotetraose,in infant nutrition[J].Pediatric Gastroenterology,Hepatology & Nutrition,2019,22(4):330-340.
[18] HE Y Y,LIU S B,KLING D E,et al.The human milk oligosaccharide 2′-fucosyllactose modulates CD14 expression in human enterocytes,thereby attenuating LPS-induced inflammation[J].Gut,2016,65(1):33-46.
[19] SPRENGER N, LEE L Y,DE CASTRO C A, et al.Longitudinal change of selected human milk oligosaccharides and association to infants′ growth,an observatory,single center,longitudinal cohort study[J].PloS One,2017,12(2):e0 171 814.
[20] JACOBI S K,YATSUNENKO T,LI D P,et al.Dietary isomers of sialyllactose increase ganglioside sialic acid concentrations in the corpus callosum and cerebellum and modulate the colonic microbiota of formula-fed piglets[J].The Journal of Nutrition,2016,146(2):200-208.
[21] VAZQUEZ E,BARRANCO A,RAMIREZ M J,et al.Effects of a human milk oligosaccharide,2′-fucosyllactose,on hippocampal long-term potentiation and learning capabilities in rodents[J].The Journal of Nutritional Biochemistry,2015,26(5):455-465.
[22] TARR A J,GALLEY J D,FISHER S E,et al.The prebiotics 3′-sialyllactose and 6′-sialyllactose diminish stressor-induced anxiety-like behavior and colonic microbiota alterations:evidence for effects on the gut-brain axis[J].Brain Behavior and Immunity,2015,50:166-177.
[23] 闫竞宇,丁俊杰,金高娃,等.人乳寡糖的分离分析[J].生物技术进展,2018,8(6):469-476;553.
YAN JY,DING J J,JIN G W,et al.Separation and analysis of human milk oligosaccharides[J].Current Biotechnology,2018,8(6):469-476;553.
[24] TOTTEN S M,WU L D,PARKER E A,et al.Rapid-throughput glycomics applied to human milk oligosaccharide profiling for large human studies[J].Analytical and Bioanalytical Chemistry,2014,406(30):7 925-7 935.
[25] THURL S,MUNZERT M,HENKER J,et al.Variation of human milk oligosaccharides in relation to milk groups and lactational periods[J].The British Journal of Nutrition,2010,104(9):1 261-1 271.
[26] AUSTIN S,CUANY D,MICHAUD J,et al.Determination of 2′-fucosyllactose and lacto-N-neotetraose in infant formula[J].Molecules,2018,23(10):E2 650.
[27] STAHL B,THURL S,ZENG J,et al.Oligosaccharides from human milk as revealed by matrix-assisted laser desorption/ionization mass spectrometry[J].Analytical Biochemistry,1994,223(2):218-226.
[28] NINONUEVO M R,PARK Y,YIN H,et al.A strategy for annotating the human milk glycome[J].Journal of Agricultural and Food Chemistry,2006,54(20):7 471-7 480.
[29] LOCASCIO R G,NINONUEVO M R,KRONEWITTER S R,et al.A versatile and scalable strategy for glycoprofiling bifidobacterial consumption of human milk oligosaccharides[J].Microbial Biotechnology,2009,2(3):333-342.
[30] ALY M R E,IBRAHIM E S I,EL-ASHRY E S H,et al.Synthesis of lacto-N-neotetraose and lacto-N-tetraose using the dimethylmaleoyl group as amino protective group[J].Carbohydrate Research,1999,316(1-4):121-132.
[31] SHERMAN A A,YUDINA O N,MIRONOV Y V,et al.Study of glycosylation with N-trichloroacetyl-D-glucosamine derivatives in the syntheses of the spacer-armed pentasaccharides sialyl lacto-N-neotetraose and sialyl lacto-N-tetraose,their fragments,and analogues[J].Carbohydrate Research,2001,36(1):13-46.
[32] CHEN C C,ZHANG Y,XUE M Y,et al.Sequential one-pot multienzyme (OPME) synthesis of lacto-N-neotetraose and its sialyl and fucosyl derivatives[J].Chemical Communications,2015,51(36):7 689-7 692.
[33] ZHAO C,WU Y J,YU H,et al.One-pot multienzyme (OPME) synthesis of human blood group H antigens and a human milk oligosaccharide (HMOS) with highly active Thermosynechococcus elongatus α 1-2-fucosyltransferase[J].Chemical Communications,2016,52(20):3 899-3 902.
[34] JENNUM C A,FENGER T H,BRUUN L M,et al.One-pot glycosylations in the synthesis of human milk oligosaccharides[J].European Journal of Organic Chemistry,2014,2014 (15):3 232-3 241.
[35] CHOI Y H,KIM J H,PARK B S,et al.Solubilization and iterative saturation mutagenesis of α1,3-fucosyltransferase from Helicobacter pylori to enhance its catalytic efficiency[J].Biotechnology and Bioengineering,2016,113(8):1 666-1 675.
[36] ZEUNER B,JERS C,MIKKELSEN J D,et al.Methods for improving enzymatic trans-glycosylation for synthesis of human milk oligosaccharide biomimetics[J].Journal of Agricultural and Food Chemistry,2014,62(40):9 615-9 631.
[37] 魏万涛, 李梦丽,江波,等.L-岩藻糖激酶/GDP-L-岩藻糖焦磷酸化酶的克隆表达及酶学性质研究[J].食品与发酵工业,2020,46(9):18-24.
WEI W T,LI M L,JIANG B,et al.Cloning,expressing and characterization of L-fucokinase/GDP-L-fucose pyrophosphorylase from Bacteroides fragilis[J].Food and Fermentation Industries,2020,46(9):18-24.
[38] KOIZUMI S,ENDO T,TABATA K,et al.Large-scale production of GDP-fucose and Lewis X by bacterial coupling[J].Journal of Industrial Microbiology and Biotechnology,2000,25(4):213-217.
[39] LEE W H,CHIN Y W,HAN N S.Enhanced production of GDP-L-fucose by overexpression of NADPH regenerator in recombinant Escherichia coli[J].Applied Microbiology and Biotechnology,2011,91(4):967-976.
[40] LEE W H,HAN N S,PARK Y C,et al.Modulation of guanosine 5′-diphosphate-D-mannose metabolism in recombinant Escherichia coli for production of guanosine 5′-diphosphate-L-fucose[J].Bioresource Technology,2009,100(24):6 143-6 148.
[41] BAUMGARTNER F,SEITZ L,SPRENGER G A.Construction of Escherichia coli strains with chromosomally integrated expression cassettes for the synthesis of 2′-fucosyllactose[J].Microbial Cell Factories,2013,12(1):883-902.
[42] LEE W H,PATHANIBUL P,QUARTERMAN J,et al.Whole cell biosynthesis of a functional oligosaccharide,2′-fucosyllactose,using engineered Escherichia coli[J].Microbial Cell Factories,2012,11(1):48.
[43] CHIN Y W,KIM J Y,LEE W H,et al.Enhanced production of 2′-fucosyllactose in engineered Escherichia coli BL21 star (DE3) by modulation of lactose metabolism and fucosyltransferase[J].Journal of Biotechnology,2015(210):107-115.
[44] DROUILLARD S,DRIGUEZ H,SAMAIN E.Large-scale synthesis of H-antigen oligosaccharides by expressing Helicobacter pylori alpha1,2′-fucosyltransferase in metabolically engineered Escherichia coli cells[J].Angewandte Chemie,2006,45(11):1 778-1 780.
[45] 吴志刚,周晓雷,邹卫.一种基因工程菌制备2-岩藻糖基乳糖的方法:中国,CN109554385A[P].2019-04-02.
WU Z G,ZHOU X L,ZOU W.Method for preparing 2-fucosyllactose by genetic engineering bacteria:China,CN109554385A[P].2019-04-02.
[46] 李晨晨, 李梦丽,江波,等.2′-岩藻糖基乳糖的生物合成菌株构建及发酵研究[J].食品与发酵工业,2021,47(3):10-17.
LI C C,LI M L,ZHANG T,et al.Study on the construction and fermentation of 2′-fucosyllactose biosynthetic strain[J].Food and Fermentation Industries,2021,47(3):10-17.
[47] HUANG D,YANG K X,LIU J,et al.Metabolic engineering of Escherichia coli for the production of 2′-fucosyllactose and 3-fucosyllactose through modular pathway enhancement[J].Metabolic Engineering,2017,41:23-38.
[48] TAN Y M,ZHANG Y,HAN Y B,et al.Directed evolution of an α1,3-fucosyltransferase using a single-cell ultrahigh-throughput screening method[J].Science Advances,2019,5(10):eaaw 8451.
[49] FIERFORT N,SAMAIN E.Genetic engineering of Escherichia coli for the economical production of sialylated oligosaccharides[J].Journal of Biotechnology,2008,134(3):261-265.
[50] DROUILLARD S,MINE T,KAJIWARA H,et al.Efficient synthesis of 6′-sialyllactose,6,6′-disialyllactose,and 6′-KDO-lactose by metabolically engineered E.coli expressing a multifunctional sialyltransferase from the Photobacterium sp.JT-ISH-224[J].Carbohydrate Research,2010,345(10):1 394-1 399.
[51] GUO Y,JERS C,MEYER A S,et al.A Pasteurella multocida sialyltransferase displaying dual trans-sialidase activities for production of 3′-sialyl and 6′-sialyl glycans[J].Journal of Biotechnology,2014,170:60-67.
[52] YANG P,WANG J,PANG Q X,et al.Pathway optimization and key enzyme evolution of N-acetylneuraminate biosynthesis using an in vivo aptazyme-based biosensor[J].Metabolic Engineering,2017,43(Pt A):21-28.
[1] 蒋彤, 纪杭燕, 柏玉香. Lactobacillus reuteri 121 4,6-α-葡萄糖基转移酶GtfBdN改性薯类淀粉产物结构及理化特性研究[J]. 食品与发酵工业, 2021, 47(9): 42-48.
[2] 师中迪, 宋雪婷, 余旭亚. 外源褪黑素对盐胁迫下单针藻Monoraphidium sp.QLY-1油脂合成的影响[J]. 食品与发酵工业, 2021, 47(9): 63-69.
[3] 刘志芳, 赵前程, 刘志东, 段蕊, 林娜, 张俊杰. 贝类多糖研究进展[J]. 食品与发酵工业, 2021, 47(9): 299-306.
[4] 芦楠, 李宇虹, 陈宁, 张成林. L-异亮氨酸及其衍生物代谢工程研究进展[J]. 食品与发酵工业, 2021, 47(9): 307-313.
[5] 邵家威, 王明辉, 李青, 张桂香, 张炳文, 鲁佩杰. 芝麻油品质评价体系的构建[J]. 食品与发酵工业, 2021, 47(9): 335-342.
[6] 陈晓思, 贺稚非, 王泽富, 李洪军. 过氧自由基对兔肉肌原纤维蛋白理化性质及结构的影响[J]. 食品与发酵工业, 2021, 47(8): 54-61.
[7] 牛娜娜, 沙如意, 杨陈铭, 王珍珍, 茹语婷, 戴静, 韩洪庚, 张黎明, 毛建卫. 预处理工艺对黑蒜功能性成分、抗氧化活性影响及相关性研究[J]. 食品与发酵工业, 2021, 47(8): 67-75.
[8] 刘昕, 张驰, 薛艾莲, 赵吉春, 曾凯芳, 明建. 超声-酶法提取的豆腐柴低酯果胶理化性质及结构表征[J]. 食品与发酵工业, 2021, 47(8): 108-115.
[9] 邓祥宜, 李继伟, 何立超, 张原源, 黄国威, 鲍晓龙, 邱朝坤. 宣恩火腿发酵过程中表面微生物群落演替规律[J]. 食品与发酵工业, 2021, 47(7): 34-42.
[10] 赵改名, 茹昂, 郝婉名, 张桂艳, 田玮, 祝超智, 乃比江, 刘建明. 不同母本西门塔尔杂交牛各部位肉品质与蛋白质功能特性的差异[J]. 食品与发酵工业, 2021, 47(7): 78-85.
[11] 顾欣, 高涛, 刘梦雅, 丛之慧, 张诚雅, 肖乐艳, 李迪, 胡景涛. 梁平柚柚皮多糖的提取、结构解析及抗氧化能力研究[J]. 食品与发酵工业, 2021, 47(7): 137-145.
[12] 赵颖颖, 李三影, 田金凤, 扶磊, 贾丰鲜, 李可, 吴丽丽, 白艳红. 超声波对不同盐浓度下肌原纤维蛋白溶解性的影响[J]. 食品与发酵工业, 2021, 47(7): 197-202.
[13] 闫程程, 刘海梅, 赵芹, 牛丽红, 蒋邦智, 柳玉琳, 闫晴, 于慧. 裙带菜孢子叶的生物活性物质及其在食品中的应用[J]. 食品与发酵工业, 2021, 47(7): 307-315.
[14] 易媛, 左勇, 黄雪芹, 杨建飞, 徐佳, 马倩, 胡琨. 食用植物酵素开发关键技术研究进展[J]. 食品与发酵工业, 2021, 47(7): 316-321.
[15] 党慧杰, 郑远荣, 刘振民. 超高压处理对乳清分离蛋白结构及致敏蛋白含量的影响[J]. 食品与发酵工业, 2021, 47(6): 56-61.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn