Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (15): 56-62    DOI: 10.13995/j.cnki.11-1802/ts.026409
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
多轮ARTP诱变快速筛选低产乙醛工业啤酒酵母
孙可澄1, 尹花2, 赵鑫锐1,3,4, 陈璐2, 李江华1,3,4, 侯晓平2, 堵国成1,3,4,5*
1(江南大学 生物工程学院,江苏 无锡,214122)
2(啤酒生物发酵工程国家重点实验室(青岛啤酒股份有限公司),山东 青岛,266000)
3(江南大学 工业生物技术教育部重点实验室,江苏 无锡,214122)
4(江南大学 未来食品科学中心,江苏 无锡,214122)
5(糖化学与生物技术教育部重点实验室(江南大学),江苏 无锡,214122)
Rapid screening of industrial brewer’s yeast with low acetaldehyde yield by multi-round ARTP mutagenesis
SUN Kecheng1, YIN Hua2, ZHAO Xinrui1,3,4, CHEN Lu2, LI Jianghua1,3,4, HOU Xiaoping2, DU Guocheng1,3,4,5*
1(School of Biotechnology,Jiangnan University,Wuxi 214122,China)
2(State Key Laboratory of Biological Fermentation Engineering of Beer,Tsingtao Brewery Company Limited,Qingdao 266000,China)
3(Key Laboratory of Industrial Biotechnology,Ministry of Education,School of Biotechnology,Jiangnan University,Wuxi 214122,China)
4(Science Center for Future Foods,Jiangnan University,Wuxi 214122,China)
5(The Key Laboratory of Carbohydrate Chemistry and Biotechnology,Ministry of Education,Jiangnan University,Wuxi 214122,China)
下载:  HTML  PDF (2587KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 乙醛是啤酒中含量最高的羰基异味化合物,其含量直接影响啤酒的风味和稳定性,而酵母代谢是乙醛的主要来源。为选育发酵性能优良的低产乙醛酿酒酵母,以Lager型工业啤酒酵母为对象,通过多轮常压室温等离子体(atmospheric room temperature plasma,ARTP)诱变育种技术构建突变库,利用乙醇-双硫仑抗性平板、高浓度乙醛筛选平板及其驯养液完成菌株的筛选及驯化,建立诱变-筛选-驯化的多轮初筛体系。复筛以乙醇脱氢酶Ⅰ、Ⅱ和乙醛脱氢酶等关键酶活性变化为指标,经实验室摇瓶水平发酵,最终获得主要酒体风味、发酵性能和生物学特性均与出发菌株无显著差异的低产乙醛工业酿酒酵母。研究结果表明:突变菌株Lager-16发酵的啤酒中乙醛含量由42.03 mg/L降至16.51 mg/L,降幅达61.63%;同时除乙醛外的主体风味物质,酒精度、原麦汁浓度和发酵速度等发酵性能指标,生长性能及絮凝性等生物学特性指标均与出发菌株无显著差异。Lager-16具有应用于啤酒工业生产的潜能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙可澄
尹花
赵鑫锐
陈璐
李江华
侯晓平
堵国成
关键词:  乙醛  酿酒酵母  常压室温等离子体诱变  啤酒酿造    
Abstract: Acetaldehyde is a major carbonyl compound in beer which influences the flavor and stability. The metabolism of yeast is the major source of acetaldehyde for beer. In order to select Saccharomyces cerevisiae with low acetaldehyde and superior fermentability, the industrial Lager yeast was mutated by multi-round ARTP. In addition, disulfiram and acetaldehyde with different contents were added for screening and domesticating mutants. Next, the activities of alcohol dehydrogenase and acetaldehyde dehydrogenase were measured in the initially screened strains. Furthermore, the industrial brewer's yeast with low acetaldehyde was obtained which showed few differences in the major aroma substances, fermentability and biological characteristics. The results showed that in the Lager-16 fermented beer the acetaldehyde decreased by 61.63% from 42.03 mg/L to 16.51 mg/L, and the main aroma components, alcohol, original wort, fermentation rate, growth curve and flocculability were no obvious differences with Lager yeast. Therefore, Lager-16 was the most promising strain for industrial lager beer. The results could provide a theoretical basis for further developing industrial brewer’s yeast and industrial production of high-quality beer.
Key words:  acetaldehyde    Saccharomyces cerevisiae    ARTP mutagenesis    beer brewery
收稿日期:  2020-12-08      修回日期:  2020-12-25           出版日期:  2021-08-15      发布日期:  2021-08-23      期的出版日期:  2021-08-15
基金资助: 国家重点研发计划项目(2017YFC1600403);国家轻工技术与工程一流学科自主课题(LITE2018-08)
作者简介:  硕士研究生(堵国成教授为通讯作者,E-mail:gcdu@jiangnan.edu.cn)
引用本文:    
孙可澄,尹花,赵鑫锐,等. 多轮ARTP诱变快速筛选低产乙醛工业啤酒酵母[J]. 食品与发酵工业, 2021, 47(15): 56-62.
SUN Kecheng,YIN Hua,ZHAO Xinrui,et al. Rapid screening of industrial brewer’s yeast with low acetaldehyde yield by multi-round ARTP mutagenesis[J]. Food and Fermentation Industries, 2021, 47(15): 56-62.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.026409  或          http://sf1970.cnif.cn/CN/Y2021/V47/I15/56
[1] JAEGER S R,WORCH T,PHELPS T,et al.Effects of “craft” vs.“traditional” labels to beer consumers with different flavor preferences:A comprehensive multi-response approach[J].Food Quality and Preference,2021,87:104 043.
[2] KUCHARCZYK K,ZYLA K,TUSZYNSKI T.Simultaneous optimization of acetaldehyde and DMS concentrations for better sensory quality of beer fermented on an industrial scale[J].Foods,2020,9(8):1 043.
[3] SHIN K S,LEE J H.Acetaldehyde contents and quality characteristics of commercial alcoholic beverages[J].Food Science and Biotechnology,2019,28(4):1 027-1 036.
[4] 刘春凤, 赵云,李崎,等.低乙醛Lager型啤酒酵母研究进展[J].菌物学报,2018,37(11):1 411-1 423.LIU C F,ZHAO Y,LI Q,et al.Research advances in lager brewer’s yeast with low acetaldehyde production[J].Mycosystema,2018,37(11):1 411-1 423.
[5] XU X,NIU C T,LIU C F,et al.Unraveling the mechanisms for low-level acetaldehyde production during alcoholic fermentation in Saccharomyces pastorianus lager yeast[J].Journal of Agricultural and Food Chemistry,2019,67(7):2 020-2 027.
[6] SANCHEZ R G,SOLODOVNIKOVA N,WENDLAND J.Breeding of lager yeast with Saccharomyces cerevisiae improves stress resistance and fermentation performance[J].Yeast,2012,29(8):343-355.
[7] 沈楠. 低产乙醛啤酒酵母的选育[D].无锡:江南大学,2013.SHEN N.Screening of brewer’s yeast of low acetaldehyde production[D].Wuxi:Jiangnan University,2013.
[8] 张媛媛. 低产乙醛啤酒酵母的选育与研究[D].无锡:江南大学,2011.ZHANG Y Y.Screening of brewer’s yeast with low acetaldehyde[D].Wuxi:Jiangnan University,2011.
[9] 王君伟. 啤酒酵母乙醛代谢关键酶及低乙醛菌株快速筛选的研究[D].济南:齐鲁工业大学,2016.WANG J W.Study on the key enzymes of acetaldehyde metabolism of beer yeast and rapid screening of yeast with low acetaldehyde[D].Jinan:Qilu University of Technology,2016.
[10] 曹荣锟, 李佳泰,王金晶,等.大米辅料啤酒中蛋白质疏水性与蛋白质泡沫稳定性的分析[J].食品与发酵工业,2018,44(9):66-70.CAO R K,LI J T,WANG J J,et al.Hydrophobicity and foaming stability analysis of rice beer protein[J].Food and Fermentation Industries,2018,44(9):66-70.
[11] JIANG G Z,YANG Z M,WANG Y,et al.Enhanced astaxanthin production in yeast via combined mutagenesis and evolution[J].Biochemical Engineering Journal,2020,156:107 519.
[12] 沈楠, 王金晶,刘春凤,等.低产乙醛啤酒酵母的定向驯化筛选[J].食品与发酵工业,2013,39(7):94-97.SHEN N,WANG J J,LIU C F,et al.Screening of brewer’s yeast with low acetaldehyde by directional domestication[J].Food and Fermentation Industries,2013,39(7):94-97.
[13] 孙传伯, 曹猛,陈存武,等.低产乙醛拉格啤酒酵母的选育[J].皖西学院学报,2020,36(5):64-70.SUN C B,CAO M,CHEN C W,et al.Screening of lager’s yeast of low acetaldehyde production[J].Journal of West Anhui University,2020,36(5):64-70.
[14] 崔云前, 王君伟,李红,等.啤酒酵母乙醛代谢关键酶相关性研究[J].中国酿造,2016,35(1):29-33.CUI Y Q,WANG J W,LI H,et al.Correlation of key enzymes of acetaldehyde metabolism in beer yeast[J].China Brewing,2016,35(1):29-33.
[15] SUNG C K,KIM S M,OH C J,et al.Taraxerone enhances alcohol oxidation via increases of alcohol dehyderogenase (ADH) and acetaldehyde dehydrogenase (ALDH) activities and gene expressions[J].Food and Chemical Toxicology,2012,50(7):2 508-2 514.
[16] 郑英训, 郑飞云,朱林江,等.脱胚玉米糁在啤酒酿造中的应用[J].食品与发酵工业,2016,42(10):87-92.ZHENG Y X,ZHENG F Y,ZHU L J,et al.The application of degermed corn grits as adjunct in beer brewing[J].Food and Fermentation Industries,2016,42(10):87-92.
[17] 朱凤娇, 陈叶福,王希彬,等.上面发酵高粱啤酒的工艺研究[J].现代食品科技,2017,33(9):210-216.ZHU F J,CHEN Y F,WANG X B,et al.Study on the brewing process of top-fermented sorghum beer[J].Modern Food Science and Technology,2017,33(9):210-216.
[18] SALASPURO M.Local acetaldehyde:Its key role in alcohol-related oropharyngeal cancer[J].Visceral Medicine,2020,36(3):167-173.
[19] VOLCHENKO N N,SAMKOV A A,MALYSHKO V V,et al.Influence of the environmental isotope composition modification on growth and metabolic activity of Rhodococcus and Saccharomyces[J].Biology Bulletin,2020,47(4):339-343.
[20] KREGIEL D,BERLOWSKA J,SZUBZDA B.Novel permittivity test for determination of yeast surface charge and flocculation abilities[J].Journal of Industrial Microbiology & Biotechnology,2012,39(12):1 881-1 886.
[21] XU X,WANG J,BAO M,et al.Reverse metabolic engineering in lager yeast:Impact of the NADH/NAD(+) ratio on acetaldehyde production during the brewing process[J].Applied Microbiology and Biotechnology,2019,103(2):869-880.
[22] STANISLAV K,KABELOVA-FICOVA H,GREGOR T,et al.Preparation of malts for production of special beers[J].Potravinarstvo Slovak Journal of Food Sciences,2017,11(1):441-445.
[23] 王孟祺. 接种量对上面发酵酵母高级醇代谢的影响及机理研究[D].天津:天津科技大学,2019.WANG M Q.The mechanism of the effect of pitching rate on the metabolism of higher alcohols by top-fermenting yeast[D].Tianjin:Tianjin University of Science & Technology,2019.
[24] PANTELOGLOU A G,SMART K A,COOK D J.Malt-induced premature yeast flocculation:current perspectives[J].Journal of Industrial Microbiology & Biotechnology,2012,39(6):813-822.
[1] 杨新, 陈莉, 杨双全, 卢红梅, 章之柱. 不同培养条件下酿酒酵母菌的转录组差异分析[J]. 食品与发酵工业, 2021, 47(4): 102-109.
[2] 张晓晓, 任剑星, 刘凯毅, 李潇, 董健. TOR1基因缺失对酿酒酵母耐受性的影响[J]. 食品与发酵工业, 2021, 47(2): 1-7.
[3] 董弦弦, 吴晓江, 张钰龙, 巫小丹, 万茵, 刘成梅, 付桂明. 常压室温等离子体诱变选育产单宁酶炭黑曲霉及发酵参数优化[J]. 食品与发酵工业, 2021, 47(15): 15-21.
[4] 严豪, 王志远, 庞子萱, 林苹鑫, 吴疆, 李业, 白仲虎. 调控质粒拷贝数优化酿酒酵母异源合成真菌聚酮10,11-dehydrocurvularin[J]. 食品与发酵工业, 2021, 47(14): 63-69.
[5] 李明瑕, 刘春凤, 王壬, 郑飞云, 王金晶, 钮成拓, 李崎. 黄桃果酒酿酒酵母的筛选与发酵特性分析[J]. 食品与发酵工业, 2021, 47(14): 113-122.
[6] 魏亚楠, 王金晓, 林良才, 陈博超, 崔丹瑶, 张翠英. 适量产乙酸酯酿酒酵母菌株的选育[J]. 食品与发酵工业, 2021, 47(13): 98-106.
[7] 张曼, 钟涛, 魏雪, 阚建全, 武运, FERENC Hegyi, 杜木英. 不同非酿酒酵母与酿酒酵母混合发酵对脆红李酒品质的影响[J]. 食品与发酵工业, 2021, 47(12): 110-116.
[8] 林杨, 布丽根·加冷别克, 孙建, 谭慧林, 周洁, 刘少杰, 王伟, 顾美英, 张志东. 乳酸菌的筛选及高产酸菌株的常压室温等离子体诱变选育[J]. 食品与发酵工业, 2021, 47(12): 176-181.
[9] 魏春雨, 朱道洋, 上官修蕾, 余晓斌. 不同酿酒酵母对黑果腺肋花楸酒成分的影响[J]. 食品与发酵工业, 2021, 47(12): 182-188.
[10] 赵祥颖, 刘丽萍, 张家祥, 赵立强, 韩墨, 姚明静. 基于气相色谱-离子迁移谱联用技术分析甘薯块根不同组分对甘薯特征风味剂香气的贡献[J]. 食品与发酵工业, 2021, 47(12): 236-243.
[11] 曾令杰, 黄锦翔, 丰丕雪, 安佳星, 佀再勇, 龙秀锋, 易弋. 基于RNA-seq技术的酿酒酵母响应甲酸胁迫的分子机制研究[J]. 食品与发酵工业, 2021, 47(10): 58-65.
[12] 冉艳朋, 徐沙, 李由然, 蒋玮, 顾正华, 丁重阳, 张梁, 石贵阳. 代谢工程改造酿酒酵母促进L-苯丙氨酸的合成[J]. 食品与发酵工业, 2020, 46(9): 1-9.
[13] 李亿, 秦艳, 申乃坤, 朱婧, 梁戈, 王青艳. 酿酒酵母pdc基因缺陷菌株的构建及其丙酮酸发酵特性[J]. 食品与发酵工业, 2020, 46(8): 7-13.
[14] 赵雪平, 郑海武, 雷蕾, 李婷, 张美枝, 李正英. 本土酿酒酵母发酵梅鹿辄干红动态变化研究[J]. 食品与发酵工业, 2020, 46(8): 105-110.
[15] 叶片, 刘建, 黄均, 严乐晋, 周荣清. 不同种属酵母菌共培发酵桑葚酒的工艺优化[J]. 食品与发酵工业, 2020, 46(8): 173-178.
[1] . Isolation and identification of anaerobic bacteria in the process of Maotai-flavor liquor brewing[J]. Food and Fermentation Industries, 0, (): 1 .
[2] CUI Shu-mao,ZHAO Jian-xin,CHEN Wei,ZHANG Hao. Effect of acids produced by metabolizing carbohydrate of protectants on viability of Lactobacillus during freezing[J]. Food and Fermentation Industries, 2017, 43(3): 14 .
[3] SHEN Fang-lin,HUANG Shuang-cheng,HOU Peng-chen,GENG An-li,RUAN Wen-quan. A high effective autonomous replicative sequence in Saccharomyces cerevisiae[J]. Food and Fermentation Industries, 2017, 43(3): 20 .
[4] SHAO Xin,SUN Kai,XIONG Jing,YU Chong,WU Xi-Yang. The cadmium removal mechanism of lactobacillus strains[J]. Food and Fermentation Industries, 2017, 43(3): 48 .
[5] FAN Hui-ping1;2; CHEN Yue-hua1; BIAN Ke3; ZHENG Xue-ling3; AI Zhi-lu1*. The effect of alkaline salt on rheological properties of dough and noodle quality[J]. Food and Fermentation Industries, 2018, 44(4): 97 -103 .
[6] DING Rui-xue, WANG Yi-ran, WU Ri-na, YUE Xi-qing, LUO Xue, WU Jun-rui. Research progress on fermented milk regulating human intestinal nutrition and health[J]. Food and Fermentation Industries, 2018, 44(12): 281 -287 .
[7] GAO Dayu, LI Yiguan, CUI Fengjiao, TIAN Qingzhen, ZHANG Guoshun, CHEN Jianxin. Effects of high proteolytic rate on sesame-flavor liquor fermentation process and liquor quality[J]. Food and Fermentation Industries, 2019, 45(6): 8 -15 .
[8] LIU Qianqian, LI Junwei, CAO Runjie, ZHANG Huimin, HE Hongkui, LI Anjun, ZHANG Zhizhou. Employment of PRIMER-BLAST to design species-specific primers for Lactobacillus acetotolerans and their implications in quality assessment of pitmud or Zaopei samples in Gujing Tribute liquor[J]. Food and Fermentation Industries, 2019, 45(6): 16 -22 .
[9] LIU Xiaoqin, YANG Yan, WU Zheyu, GONG Jianye, LIU Jianan, LIAO Hui, LI Wenjing, LI Lijun. Enhanced thermostability of α-L-rhamnosidase by multiple-site mutation[J]. Food and Fermentation Industries, 2019, 45(6): 23 -29 .
[10] ZHOU Jian, FANG Zhikai, SUN Fei, JIANG Hong. Identification of a Streptomyces isolate and fermentation process of bafilomycin A1 production[J]. Food and Fermentation Industries, 2019, 45(6): 30 -35 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn