Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (17): 27-33    DOI: 10.13995/j.cnki.11-1802/ts.026445
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
适应性驯化生产低分子质量β-葡聚糖及其抗氧化活性研究
王冰1, 朱莉2, 李茂玮1, 詹晓北1*
1(糖化学与生物技术教育部重点实验室,江南大学 生物工程学院,江苏 无锡,214122)
2(无锡格莱克斯生物科技有限公司,江苏 无锡,214125)
Improvement of low-mass β-glucan yield by adaptive laboratory evolution and its antioxidant activity
WANG Bing1, ZHU Li2, LI Maowei1, ZHAN Xiaobei1*
1(Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education,School of Biotechnology, Jiangnan University,Wuxi 214122,China)
2(Wuxi Galaxy Biotech Co.Ltd.,Wuxi 214125,China)
下载:  HTML  PDF (2295KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 β-葡聚糖被认为是一种潜在的功能性多糖。利用适应性驯化(adaptive laboratory evolution,ALE)的方法,将甘油作为碳源,诱导土壤杆菌生产低分子质量β-葡聚糖,研究新型多糖的抗氧化活性。通过筛选获得了1株将甘油作为碳源、可稳定获得低分子质量产物的高活力菌株Agrobacterium sp.WS-8E3T,该菌株在100 g/L甘油中摇瓶发酵120 h,稳定产生分子质量在2 800~3 600 Da的新型低分子质量多糖(β-gluco-oligosaccharides,BGOs)。通过红外光谱、单糖组成及核磁分析对其结构进行解析,证明BGOs为β-1,3-葡聚糖。该葡聚糖显示了一定的抗氧化活性,1,1-二苯基-2-三硝基苯肼(1,1-diphenyl-2-picrylhydrazyl,DPPH)清除率、·OH清除率均能达到抗坏血酸的80%。采用甘油适应性驯化菌株的方法生产得到的低分子质量β-葡聚糖具有较好的抗氧化性能,研究结果为BGOs在功能食品和医药领域的应用提供了研究基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王冰
朱莉
李茂玮
詹晓北
关键词:  β-葡聚糖  甘油  适应性驯化  结构表征  抗氧化活性    
Abstract: β-Glucan is considered as a potential functional polysaccharide. The adaptive laboratory evolution was used to induce Agrobacterium sp. to produce low molecular weight β-glucan with glycerol, and the antioxidant activity was determined. Agrobacterium sp.WS-8E3T produced, a novel polysaccharide, β-gluco-oligosaccharides (BGOs) with 2 800-3 600 Da stably after 120 h in 100 g/L glycerol shake flask. The BGOs was analyzed by infrared spectrum, monosaccharide composition and NMR, which proved that BGOs was β-1,3-glucan. The BGOs had antioxidant capacity with the scavenging rate of DPPH radical and hydroxyl radical reached to 80% of ascorbic acid. The results showed that the BGOs had better antioxidant properties, and provides the basis for the application of BGOs in the functional food and medicine field.
Key words:  β-glucan    glycerol    adaptive laboratory evolution    structural characterization    antioxidant activity
收稿日期:  2020-12-11      修回日期:  2021-01-06                发布日期:  2021-09-27      期的出版日期:  2021-09-15
基金资助: 国家自然科学基金项目(31171640)
作者简介:  硕士研究生(詹晓北教授为通讯作者, E-mail:xbzhan@yahoo.com)
引用本文:    
王冰,朱莉,李茂玮,等. 适应性驯化生产低分子质量β-葡聚糖及其抗氧化活性研究[J]. 食品与发酵工业, 2021, 47(17): 27-33.
WANG Bing,ZHU Li,LI Maowei,et al. Improvement of low-mass β-glucan yield by adaptive laboratory evolution and its antioxidant activity[J]. Food and Fermentation Industries, 2021, 47(17): 27-33.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.026445  或          http://sf1970.cnif.cn/CN/Y2021/V47/I17/27
[1] SUN N X,TONG L T,LIANG T T,et al.Effect of oat and Tartary buckwheat-based food on cholesterol-lowering and gut microbiota in hypercholesterolemic hamsters[J].Journal of Oleo Science,2019,68(3):251-259.
[2] KHAN A A,GANI A,SHAH A,et al.Effect of γ-irradiation on structural,functional and antioxidant properties of β-glucan extracted from button mushroom (Agaricus bisporus)[J].Innovative Food Science and Emerging Technologies,2015,31:123-30.
[3] WANG H,WEENING D,JONKERS E,et al.A curve fitting approach to estimate the extent of fermentation of indigestible carbohydrates[J].European Journal of Clinical Investigation,2008,38(11):863-868.
[4] SHI Y,LIU J,YAN Q,et al.In vitro digestibility and prebiotic potential of curdlan (1→3)-beta-D-glucan oligosaccharides in Lactobacillus species[J].Carbohydrate Polymers,2018,188:17-26.
[5] JEDDOU K B,BOUAZIZ F,HELBERT C B,et al.Structural,functional,and biological properties of potato peel oligosaccharides[J].International Journal of Biological Macromolecules,2018,112(11):46-55.
[6] MCINTOSH M,STONE B A,STANISICH V A.Curdlan and other bacterial (1→3)-β-D-glucans[J].Applied Microbiology & biotechnology,2005,68(2):163-173.
[7] 陆光兴.热凝胶葡寡糖的高效定向水解制备及其生物活性研究[D].无锡:江南大学,2015.
LU G X,Efficient preparation of linear β-1,3-glucooligosaccharides by directed hydrolysis of Curdlan and characterization of its biological activity[D].Wuxi:JiangNan University,2015.
[8] AMINI S R,HOSSEINI H,BONDARIANZADEH D,et al.Optimization of prebiotic sausage formulation:Effect of using β-glucan and resistant starch by D-optimal mixture design approach[J].LWT-Food Science and Technology,2015,62(1):704-710.
[9] TURUNEN K T,PLETSA V,GEORGIADIS P,et al.Impact of beta-glucan on the fecal water genotoxicity of polypectomized patients[J].Nutrition and Cancer-An International Journal,2016,68(4):560-567.
[10] VEVERKA M,DUBAJ T,VEVERKOVá E,et al.Natural oil emulsions stabilized by β-glucan gel[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2018,537(3):90-98.
[11] YANG Z S,SUN A P,ZHAO X S,et al.Preparation and application of a beta-D-glucan microsphere conjugated protein A/G[J].International Journal of Biological Macromolecules,2020,151:878-884.
[12] ZHU Q,WU S.Water-soluble beta-1,3-glucan prepared by degradation of curdlan with hydrogen peroxide[J].Food Chemistry,2019,283(30):2-4.
[13] 宗玉, 李晶,朱莉,等.两步法硫酸水解热凝胶生产β-1,3-葡寡糖[J].工业微生物,2014,44(1):22-27.
ZONG Y,LI J,ZHU L,et al.Preparation of β-1,3-glucan oligosaccharides by two-step sulfuric acid hydrolysis of curdlan[J].Industrial Microbiology,2014,44(1):22-27.
[14] GRANDPIERRE C,JANSSEN H G,LAROCHE C,et al.Enzymatic and chemical degradation of curdlan targeting the production of β-(1→3) oligoglucans[J].Carbohydrate Polymers,2008,71(2):277-286.
[15] OKOYE P U,HAMEED B H.Review on recent progress in catalytic carboxylation and acetylation of glycerol as a byproduct of biodiesel production[J].Renewable and Sustainable Energy Reviews,2016,53(5):58-74.
[16] 王如月, 余讯,徐静静,等.燕麦β-葡聚糖及其寡糖对肠道菌群结构和代谢的影响[J].食品与发酵工业,2020,46(11):85-91.
WANG R Y,YU X,XU J J,et al.Effects of oat β-glucan and its oligosaccharides on composition and metabolism of intestinal microorganisms[J].Food and Fermentation Industries,2020,46(11):85-91.
[17] LIU Y,GU Q,OFOSU F K,et al.Production,structural characterization and gel forming property of a new exopolysaccharide produced by Agrobacterium HX1126 using glycerol or d-mannitol as substrate[J].Carbohydrate Polymers,2016,136(9):17-22.
[18] KUAN Y H,NAFCHI A M,HUDA N,et al.Effects of sugars on the gelation kinetics and texture of duck feet gelatin[J].Food Hydrocolloids,2016,58(2):67-75.
[19] 韦铮, 贺燕,郝麒麟,等.茶多糖在模拟胃肠消化体系的抗氧化作用[J].食品与发酵工业,2020,46(10):109-117.
WEI Z,HE Y,HAO Q L,et al.Study on the antioxidant effect of tea polysaccharides under the conditions of simulating gastrointestinal digestion in vitro [J].Food and Fermentation Industries,2020,46(10):109-117.
[20] LEI N,WANG M,ZHANG L,et al.Effects of low molecular weight yeast beta-glucan on antioxidant and immunological activities in mice[J].International Journal of Molecular Science,2015,16(9):21 575-21 590.
[21] DE AVELLAR I G J,MAGALH?ES M M M,SILVA A B,et al.Reevaluating the role of 1,10-phenanthroline in oxidative reactions involving ferrous ions and DNA damage[J].Biochimica et Biophysica Acta,2004,1675(1-3):46-53.
[22] CHEUNG Y C,YIN J Y,WU J Y.Effect of polysaccharide chain conformation on ultrasonic degradation of curdlan in alkaline solution[J].Carbohydrate Polymers,2018,195:298-302.
[23 RUFFING A M,CASTRO-MELCHOR M,HU W S,et al.Genome sequence of the curdlan-producing Agrobacterium sp.strain ATCC 31749[J].Journal of Bacteriology,2011,193(16):4 294-4 295.
[24] PORTERFIELD J Z,ZLOTNICK A.A simple and general method for determining the protein and nucleic acid content of viruses by UV absorbance[J].Virology,2010,407(2):281-288.
[25] HE P F,HE L,ZHANG A Q,et al.Structure and chain conformation of a neutral polysaccharide from Sclerotia of Polyporus umbellatus[J].Carbohydrate Polymers,2017,155:61-67.
[26] BOSE S K,HOWLADER P,WANG W X,et al.Oligosaccharide is a promising natural preservative for improving postharvest preservation of fruit:A review[J].Food Chemistry,2021,341(Pt 1):128 178.
[27] CHEN Z Y,ZHAO Y,ZHANG M K,et al.Structural characterization and antioxidant activity of a new polysaccharide from Bletilla striata fibrous roots[J].Carbohydrate Polymers,2020,227:115 362.
[28] 许女, 贾瑞娟,陈旭峰,等.鸡腿菇子实体多糖的体内、体外抗氧化活性[J].中国食品学报,2019,19(1):34-40.
XU N,JIA R J,CHEN X F,et al.Antioxidant activity in vitro and vivo of polysaccharide from Coprinus comatus[J].Journal of Chinese Institute of Food Science and Technology,2019,19(1):34-40.
[1] 冯艳钰, 臧延青. 三种小麦麸皮总黄酮的体外抗氧化活性[J]. 食品与发酵工业, 2021, 47(9): 16-24.
[2] 牛娜娜, 沙如意, 杨陈铭, 王珍珍, 茹语婷, 戴静, 韩洪庚, 张黎明, 毛建卫. 预处理工艺对黑蒜功能性成分、抗氧化活性影响及相关性研究[J]. 食品与发酵工业, 2021, 47(8): 67-75.
[3] 王子涵, 向敏, 徐茂, 蒋和体. 响应面优化黑果腺肋花楸汁澄清工艺及其抗氧化活性评价[J]. 食品与发酵工业, 2021, 47(8): 189-196.
[4] 韩宛芸, 张长懿, 顾泽鹏, 段小雨, 孙庆杰, 邱立忠, 卞希良, 邬应龙, 刘韫滔. 高产β-葡聚糖的黄伞菌株分离、鉴定及其体外模拟消化[J]. 食品与发酵工业, 2021, 47(7): 51-57.
[5] 顾欣, 高涛, 刘梦雅, 丛之慧, 张诚雅, 肖乐艳, 李迪, 胡景涛. 梁平柚柚皮多糖的提取、结构解析及抗氧化能力研究[J]. 食品与发酵工业, 2021, 47(7): 137-145.
[6] 张晓晓, 柴智, 冯进, 崔莉, 李春阳, 李莹, 黄午阳. 牛蒡多糖的提取及生物活性研究进展[J]. 食品与发酵工业, 2021, 47(6): 280-288.
[7] 张耀, 张露, 刘俊, 涂宗财. 青鱼肉活性肽的制备及其抗肿瘤活性研究[J]. 食品与发酵工业, 2021, 47(5): 35-42.
[8] 匡文玲, 李佳, 韩林, 蒋永波, 邱玲岚, 汪开拓, 王敏. 柠檬果汁主要水溶性成分分析及对高脂诱导L-02肝细胞氧化损伤影响的研究[J]. 食品与发酵工业, 2021, 47(5): 43-47.
[9] 杨燕敏, 郑振佳, 高琳, 张砚垒, 张仁堂. 红枣多糖超声波提取、结构表征及抗氧化活性评价[J]. 食品与发酵工业, 2021, 47(5): 120-126.
[10] 邓永平, 车鑫, 艾瑞波, 刘晓兰, 辛嘉英, 王晓杰. 好食脉孢霉发酵产类胡萝卜素的鉴定、抗氧化性及稳定性研究[J]. 食品与发酵工业, 2021, 47(4): 15-20.
[11] 杨波, 王珂, 杨光, 吴君波, 江容安. 黄原胶的干热改性及复配增稠应用[J]. 食品与发酵工业, 2021, 47(4): 116-122.
[12] 孙玉霞, 赵新节. 美极梅奇酵母的代谢特性及其在葡萄酒生产中的应用前景[J]. 食品与发酵工业, 2021, 47(4): 305-311.
[13] 陆娟, 谢东雪, 贺柳洋, 王月, 郑志艳. 洋甘菊多糖的分离纯化、性质结构及抗氧化活性分析[J]. 食品与发酵工业, 2021, 47(3): 72-78.
[14] 谢三都, 陈惠卿, 庄培荣, 洪家榕, 游利杰. 冲泡型灵芝白茶的制备及其茶汤的抗氧化活性[J]. 食品与发酵工业, 2021, 47(3): 135-142.
[15] 彭松林, 潘成磊, 康梦瑶, 李懿璇, 赵紫悦, 郑仁兵, 尚永彪. 卤烤鸭中类黑精的提取及其抗氧化活性与化学稳定性研究[J]. 食品与发酵工业, 2021, 47(2): 22-29.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn