Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (15): 157-164    DOI: 10.13995/j.cnki.11-1802/ts.026463
  生产与科研应用 本期目录 | 过刊浏览 | 高级检索 |
高温湿热处理对大豆分离蛋白的结构及其功能特性的影响
刘紫薇1, 朱明明1, 王凤新2, 赵强1*, 熊华1
1(食品科学与技术国家重点实验室(南昌大学),江西 南昌,330047)
2(江西人之初营养科技股份有限公司,江西 南昌,330052)
Effect of high temperature hydrothermal treatment on structure and functional properties of soybean protein isolate
LIU Ziwei1, ZHU Mingming1, WANG Fengxin2, ZHAO Qiang1*, XIONG Hua1
1(State Key Laboratory of Food Science and Technology,Nanchang University,Nanchang 330047,China)
2(Jiangxi Newborn Nutrition Technology Co.Ltd.,Nanchang 330052,China)
下载:  HTML  PDF (3253KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 研究了高温湿热处理对大豆分离蛋白结构及功能特性的影响。在中性条件下,将质量分数为1%的大豆分离蛋白(soy protein isolate,SPI)溶液在70、90、120、150、170、200 ℃下分别处理30 min,测定其处理前后结构、溶解度、表面疏水性、乳化性及乳化稳定性的变化。红外光谱的拟合计算得出,随着处理温度升高,SPI的α-螺旋含量显著增加,β-折叠含量明显减少;荧光发射光谱的测试结果表明,湿热处理导致最大发射波长发生红移,经200 ℃高温湿热处理的样品,最大发射波长红移程度最大。处理温度增加到90 ℃,溶解性逐步提高,可能是由于产生了可溶性聚集体。处理温度为120 ℃时,SPI溶解度最低。处理温度继续升高至200 ℃,溶解度再次增加,电位绝对值降低,表明湿热处理会导致溶液的稳定性降低,易发生聚集。170、200 ℃高温湿热处理的样品粒径、浊度明显增大,表明SPI形成可溶性聚集体;SPI的表面疏水性和乳化性呈先增加后降低趋势,处理温度为90 ℃时达到最大,而乳化稳定性则逐步增加。该研究为植物蛋白尤其是大豆蛋白的热聚集改性研究提供理论基础及数据参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘紫薇
朱明明
王凤新
赵强
熊华
关键词:  大豆分离蛋白  高温湿热处理  热聚集  二级结构  功能特性    
Abstract: In this work, the effects of high temperature and hydrothermal treatment on the structural and functional properties of soy protein isolate (SPI) were investigated. Under the neutral condition, 1% (mg:mL) soy protein isolate was treated at 70, 90, 120, 150, 170, 200 ℃ for 30 min, respectively, and the changes in protein structure, solubility, surface hydrophobicity, emulsification, and emulsification stability were measured before and after treatment. The fitting of the infrared spectrum showed that the α-helix content of SPI increased, meanwhile the β-sheet content decreased significantly. Moreover, with the treatment temperature increased, the maximum emission wavelength was redshifted and the maximum emission of the samples treated with high temperature and hydrothermal treatment at 200 ℃ occurred the maximum redshift. Especially, as the treatment temperature increased to 90 ℃, the solubility of SPI was increased gradually, which may due to the production of soluble aggregates. The solubility of SPI was the minimum when the treatment temperature was 120 ℃. Furthermore, with the temperature rose, the solubility was increased again until 200 ℃. On the other hand, the Zeta potential of SPI was decreased with the increase of treated temperature, which showed the system was unstable and easy to aggregate. Besides, the particle size and turbidity of SPI treated at 170 ℃ and 200 ℃ was increased obviously which indicating that SPI formed soluble aggregates. The surface hydrophobicity and emulsifying activity indexes of SPI were both increased first and then decreased, and both values reached the maximum when the treatment temperature was 90 ℃. While the emulsification stability increased with the increase of temperature. This research could provide a theoretical and direction for the thermal aggregation modification of plant protein, especially for soybean protein.
Key words:  soybean protein isolate    high temperature hydrothermal treatment    thermal aggregation    secondary structure    functional properties
收稿日期:  2020-12-18      修回日期:  2021-01-27           出版日期:  2021-08-15      发布日期:  2021-08-23      期的出版日期:  2021-08-15
基金资助: 江西省重大科技研发专项(S2018ZDYFE0040);江西省杰出青年基金项目(20192BCB23006)
作者简介:  硕士研究生(赵强副研究员为通讯作者,E-mail:qiangzhao@ncu.edu.cn)
引用本文:    
刘紫薇,朱明明,王凤新,等. 高温湿热处理对大豆分离蛋白的结构及其功能特性的影响[J]. 食品与发酵工业, 2021, 47(15): 157-164.
LIU Ziwei,ZHU Mingming,WANG Fengxin,et al. Effect of high temperature hydrothermal treatment on structure and functional properties of soybean protein isolate[J]. Food and Fermentation Industries, 2021, 47(15): 157-164.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.026463  或          http://sf1970.cnif.cn/CN/Y2021/V47/I15/157
[1] NISHINARI K,FANG Y,GUO S,et al.Soy proteins:A review on composition,aggregation and emulsification[J].Food Hydrocolloids,2014,39:301-318.
[2] KOSHY R R,MARY S K,THOMAS S,et al.Environment friendly green composites based on soy protein isolate—a review[J].Food Hydrocolloids,2015,50:174-192.
[3] PLIETZ P,DAMASCHUN G.The structure of the 11S seed globulins from various plant species:Comparative investigations by physical methods[J].Studia Biophysica,1986,116(3):153-173.
[4] 陶汝青, 夏宁,滕建文.热处理对大豆分离蛋白结构和凝胶性的影响[J].食品科学,2018,39(9):60-66.TAO R Q,XIA N,TENG J W.Effect of heat treatment on the secondary structure and gel property of soybean protein isolate[J].Food Science,2018,39(9):60-66.
[5] 王健, 徐晔晔,于洁,等.不同热处理大豆蛋白柔性与结构的关系[J].食品科学,2018,39(7):85-90.WANG J,XU Y Y,YU J,et al.Effect of heat treatments on the relationship between flexibility and structure of soy protein[J].Food Science,2018,39(7):85-90.
[6] 齐宝坤, 赵城彬,李杨,等.热处理对大豆11S球蛋白溶解性和二级结构的影响[J].食品科学,2018,39(22):39-44.QI B K,ZHAO C B,LI Y,et al.Effect of heat treatment on solubility and secondary structure of soybean 11S glycinin[J].Food Science,2018,39(22):39-44
[7] SIRISON J,MATSUMIYA K,SAMOTO M,et al.Solubility of soy lipophilic proteins:Comparison with other soy protein fractions[J].Bioscience Biotechnology and Biochemistry,2017,81(4):790-802.
[8] 袁德保. 大豆蛋白热聚集行为及其机理研究[D].广州:华南理工大学,2010.YUAN D B.Heat-induced aggregation of soy proteins and its mechanism[D].Guangzhou:South China University of Technology,2019.
[9] 安然. 大豆分离蛋白可溶性热聚集行为及其超声调控研究[D].哈尔滨:东北农业大学,2019.AN R.Study on soluble thermal aggregates of soybean protein isolate and its ultrasonic regulation[D].Harbin:Northeast Agricultural University,2019.
[10] LAEMMLI U K.Cleavage of structural proteins during assembly of head of Bacteriophage-T4[J].Nature,1970,227(5 259):680-685.
[11] MORI T,NAKAMURA T,UTSUMI S.Gelation mechanism of soybean 11S globulin:Formation of soluble aggregates as transient intermediates[J].Journal of Food Science,1982,47(1):26-30.
[12] KATO A,SASAKI Y,FURUTA R.Functional protein-polysaccharide conjugate prepared by controlled dry-heating of ovalbumin-dextran mixtures[J].Agricultural and Biological Chemistry,2014,54(1):107-112.
[13] ZHAO Q,SELOMULYA C,XIONG H,et al.Comparison of functional and structural properties of native and industrial process-modified proteins from long-grain indica rice[J].Journal of Cereal Science,2012,56(3):568-575.
[14] LIU D S,ZHOU P,NICOLAI T.Effect of Kappa carrageenan on acid-induced gelation of whey protein aggregates.Part I:Potentiometric titration,rheology and turbidity[J].Food Hydrocolloids,2020,102:105 589.
[15] 王雅卉, 邢霁云,徐婧婷,等.高温热处理对大豆蛋白消化利用效果的影响[J].食品科学,2019,40(15):92-99.WANG Y H,XING J Y,XU J T,et al.Effect of high-temperature heat treatment on digestibility of soybean protein[J].Food Science,2019,40(15):92-99.
[16] 郭超凡. 射频加热处理对大豆分离蛋白功能特性及结构的影响[D].杨陵:西北农林科技大学,2017.GUO C F.Effects of radio frequency heating treatment on functional properties and structure changes of soy protein isolate[D].Yangling:Northwest A&F University,2017.
[17] MA L,LI B,HAN F X,et al.Evaluation of the chemical quality traits of soybean seeds,as related to sensory attributes of soymilk[J].Food Chemistry,2015,173:694-701.
[18] DUFOUR E,HOA G H B,HAERTLÉ T.High-pressure effects on beta-lactoglobulin interactions with ligands studied by fluorescence[J].Biochimica Et Biophysica Acta,1994,1 206(2):166-172.
[19] LIANG H N,TANG C H.Emulsifying and interfacial properties of vicilins:Role of conformational flexibility at quaternary and/or tertiary levels[J].Journal of Agricultural & Food Chemistry,2013,61(46):11 140-11 150.
[20] SCHMIDT V,GIACOMELLI C,SOLDI V.Thermal stability of films formed by soy protein isolate-sodium dodecyl sulfate[J].Polymer Degradation and Stability,2005,87(1):25-31.
[21] MONSOOR M A.Effect of drying methods on the functional properties of soy hull pectin[J].Carbohydrate Polymers,2005,61(3):362-367.
[22] MARCONE M F,BONDI M C,YADA R Y.Isolation of soybean 11S globulin by isoelectric precipitation and sephacryl S-300 gel filtration chromatography:A new purification technique[J].Bioscience,Biotechnology,and Biochemistry,1994,58(2):413-415.
[23] 李杨, 王中江,王瑞,等.不同热处理条件下大豆分离蛋白的红外光谱分析[J].食品工业科技,2016,37(8):104-109.LI Y,WANG Z J,WANG R,et al.Fourier transform infrared spectroscopic analysis of soybean isolate protein at different heat treatment conditions[J].Science and Technology of Food Industry,2016,37(8):104-109.
[24] 顾龙建, 源博恩,赵强忠,等.pH调控-热处理改善大豆蛋白中间组分乳化特性研究[J].食品与发酵工业,2011,37(5):12-16.GU L J,YUAN B E,ZHAO Q Z,et al.Effect of pH & heat treatment on emulsifying capacity of intermediate of soybean protein[J].Food and Fermentation Industries,2011,37(5):12-16.
[25] 赵城彬, 尹欢欢,鄢健楠,等.不同热处理条件下大豆蛋白体外模拟消化产物结构和分子质量分布[J].中国食品学报,2020,20(5):59-65.ZHAO C B,YIN H H,YAN J N,et al.Structure and molecular weight distribution in vitro digestion products of soybean protein at different heat treatment conditions[J].Journal of Chinese Institute of Food Science and Technology,2020,20(5):59-65.
[26] WENG J Y,QI J R,YIN S W,et al.Fractionation and characterization of soy β-conglycinin-dextran conjugates via macromolecular crowding environment and dry heating[J].Food Chemistry,2016,196:1 264-1 271.
[27] 耿蕊, 卢岩,孔保华,等.pH偏移结合加热处理对大豆分离蛋白乳化特性的影响[J].中国食品报,2016,16(1):173-180.GENG R,LU Y,KONG B H,et al.The influence of emulsify properties of soybean protein isolate induced by pH-shifting combined with heating treatment[J].Journal of Chinese Institute of Food Science and Technology,2016,16(1):173-180.
[28] 李倩如, 熊瑶,叶倩,等.大豆分离蛋白聚集体及凝胶制品的研究进展[J].农产品加工,2019(8):71-74.LI Q R,XIONG Y,YE Q,et al.Reviews in soy protein isolate aggregates and gel products[J].Farm Products Processing,2019(8):71-74.
[29] LIANG G J,CHEN W P,QIE X J,et al.Modification of soy protein isolates using combined pre-heat treatment and controlled enzymatic hydrolysis for improving foaming properties[J].Food Hydrocolloids,2020,105:105 764.
[30] 周麟依, 孙玉凤,吴非.丙二醛氧化对米糠蛋白结构及功能性质的影响[J].食品科学,2019,40(12):98-107.ZHOU L Y,SUN Y F,WU F.Effects of oxidation by malondialdehyde on the structure and function of rice bran protein[J].Food Science,2019,40(12):98-107.
[31] 齐宝坤, 李杨,王中江,等.不同品种大豆分离蛋白Zeta电位和粒径分布与表面疏水性的关系[J].食品科学,2017,38(3):114-118.QI B K,LI Y,WANG Z J,et a1.Relationship between surface hydrophobicity and zeta potential as well as particle size distribution of soybean protein isolates from different varieties[J].Food Science,2017,38(3):114-118.
[32] CROMWELL M E M,HILARIO E,JACOBSON F.Protein aggregation and bioprocessing[J].AAPS Journal,2006,8(3):E572-E579.
[33] 王冬梅, 范志军,安然,等.大豆蛋白热聚集体的溶液行为表征[J].现代食品,2020(7):182-184.WANG D M,FAN Z J,AN R,et al.Characterization of solution behavior of soybean protein thermal aggregates[J].Modern Food,2020(7):182-184.
[34] INGRASSIA R,PALAZOLO G PALAZZOLO,WAGNER J R,et al.Heat treatments of defatted soy flour:Impact on protein structure,aggregation,and cold-set gelation properties[J].Food Structure,2019,22:100 130.
[1] 赵改名, 茹昂, 郝婉名, 张桂艳, 田玮, 祝超智, 乃比江, 刘建明. 不同母本西门塔尔杂交牛各部位肉品质与蛋白质功能特性的差异[J]. 食品与发酵工业, 2021, 47(7): 78-85.
[2] 赵颖颖, 李三影, 田金凤, 扶磊, 贾丰鲜, 李可, 吴丽丽, 白艳红. 超声波对不同盐浓度下肌原纤维蛋白溶解性的影响[J]. 食品与发酵工业, 2021, 47(7): 197-202.
[3] 闫程程, 刘海梅, 赵芹, 牛丽红, 蒋邦智, 柳玉琳, 闫晴, 于慧. 裙带菜孢子叶的生物活性物质及其在食品中的应用[J]. 食品与发酵工业, 2021, 47(7): 307-315.
[4] 张俊, 胡玲, 张三杉, 余梦玲, 雷激. 不同发芽阶段高粱粉理化及功能特性的变化[J]. 食品与发酵工业, 2021, 47(6): 68-74.
[5] 雷爱玲, 范盛玉, 王亚楠, 陈厚荣, 张甫生. 大豆分离蛋白/魔芋葡甘聚糖复合脂肪模拟物的制备及结构分析[J]. 食品与发酵工业, 2021, 47(15): 111-119.
[6] 朱坤, 刘缘勤, 范盛玉, 段雅洁, 陈厚荣, 张甫生. 魔芋葡甘聚糖-大豆分离蛋白-辣椒红色素复合有色凝胶的制备及其性能研究[J]. 食品与发酵工业, 2021, 47(15): 213-219.
[7] 司晓静, 钱海峰, 李言, 张晖, 齐希光, 王立. 水不溶性阿拉伯木聚糖及其酶解物对面筋蛋白特性的影响[J]. 食品与发酵工业, 2021, 47(12): 23-27.
[8] 向媛嫄, 王文林, 宋海云, 黄雪松. 去糖基化对水溶澳洲坚果糖肽结构和抗氧化性的影响[J]. 食品与发酵工业, 2021, 47(11): 98-103.
[9] 熊泽语, 谢晨, 陈百科, 李慧, 金素莱曼, 包海蓉. 不同添加物对未漂洗大黄鱼鱼糜品质的影响[J]. 食品与发酵工业, 2021, 47(10): 151-158.
[10] 宋旸, 刘影. 微波辅助糖基化对大豆分离蛋白乳化性的影响[J]. 食品与发酵工业, 2020, 46(6): 82-88.
[11] 刘慧菊, 韩丽娟, 乔杨波, 王树林, 焦迎春, 叶英. 不同微生物液态发酵对蚕豆蛋白营养价值及功能特性的影响[J]. 食品与发酵工业, 2020, 46(4): 65-71.
[12] 李晓明, 陈凯, 黄占旺, 沈勇根, 卢剑青, 程宏桢, 刘馥源, 安兆祥, 徐弦. 白玉菇蛋白提取工艺优化及其功能特性研究[J]. 食品与发酵工业, 2020, 46(4): 239-246.
[13] 严红波, 沈春蕾, 张宾, 苏来金, 缪文华, 水珊珊. 南美白对虾肉糜冻藏过程中蛋白质功能特性变化[J]. 食品与发酵工业, 2020, 46(24): 37-42.
[14] 毕会敏, 范方宇, 杨宗玲, 李晗, 罗林, 陈乔稳. 纳米SiO2/大豆分离蛋白为壁材的核桃油微胶囊特性[J]. 食品与发酵工业, 2020, 46(21): 147-153.
[15] 彭志杰, 杜娇, 张羽婷, 郭东东, 雷佳钰, 耿雪冉, 孟俊龙, 常明昌. 提取方法对灰树花粗蛋白结构及功能特性的影响[J]. 食品与发酵工业, 2020, 46(21): 161-166.
[1] ZHANG Dong et al. Effect of different amounts of salt on quality of bacon[J]. Food and Fermentation Industries, 2017, 43(11): 159 .
[2] CHEN Xue,LIU Han,PEI Fang-yi,LIU Zhen-yan,HOU Hui-ling,GUO Hao,DING Lin,YANG Wen-qin,ZANG Chuan-gang,LIU Yu-chao,GUAN Hong. Assessment of Bifidobacterial viability during cheese ripening by real-time PCR quantification[J]. Food and Fermentation Industries, 2017, 43(9): 117 .
[3] . [J]. Food and Fermentation Industries, 2005, 31(11): 93 .
[4] Zhao Mouming,Ren Jiaoyan,Cui Chun,Zeng Xiaofang,You Lijun. Study on Macroporous Resin for Absorbing Amino Acids in Static State from Grass Carp Protein Hydrolysates[J]. Food and Fermentation Industries, 2006, 32(4): 22 .
[5] Zhang Jingfang,Xuyu,Zhangqiang. A Study on Processing Technology of Toona sinensis Sauce[J]. Food and Fermentation Industries, 2006, 32(4): 157 .
[6] Yan Xiaoping,Li Chengping,Qiang Hong,Tong Jianying,Jin Jianchang. Determination of Trace Amounts of Iodine Inhibition Kinetics by Spectrophotometer in Food[J]. Food and Fermentation Industries, 2006, 32(7): 105 .
[7] . [J]. Food and Fermentation Industries, 2008, 34(7): 27 .
[8] Chen Wei,Lu Ying,Tian Fengwei,Zhao Jianxin,Zhang Hap. Optimization of Enrichment Medium and Determination of Fermentation Kinetic Parameter for Lactobacillus casei LC-15[J]. Food and Fermentation Industries, 2008, 34(8): 1 .
[9] . Purification of Pueraria Isoflavones with Macroreticular Resin[J]. Food and Fermentation Industries, 2003, 29(2): 62 .
[10] . Research Progress on Buckwheat Starch[J]. Food and Fermentation Industries, 2003, 29(2): 72 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn