Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (15): 255-261    DOI: 10.13995/j.cnki.11-1802/ts.026465
  分析与检测 本期目录 | 过刊浏览 | 高级检索 |
高效阴离子交换色谱-脉冲安培法分析嗜热链球菌胞外多糖的单糖组成
聂彩清, 艾连中, 熊智强, 张汇*
(上海理工大学 医疗器械与食品学院,上海食品微生物工程技术研究中心,上海,200093)
Determination of monosaccharide composition of Streptococcus thermophilus exopolysaccharides using high performance anion exchange chromatography with pulsed amperometric detector
NIE Caiqing, AI Lianzhong, XIONG Zhiqiang, ZHANG Hui*
(Shanghai Engineering Research Center of Food Microbiology,School of Medical Instrument and Food Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)
下载:  HTML  PDF (1680KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为建立稳定的以阴离子交换色谱分析嗜热链球菌胞外多糖单糖组成的方法,以淋洗液浓度为切入点,优化了梯度洗脱程序;同时,对比分析了不同方法除蛋白对多糖单糖组成分析的影响。优化后的色谱分析条件为:CarboPac PA20色谱柱(3 mm×150 mm),流速0.5 mL/min,0~20 min使用1.75 mmol/L NaOH溶液洗脱中性糖和氨基糖,20~30 min使用1.75 mmol/L NaOH溶液结合50~200 mmol/L NaOAc溶液洗脱糖醛酸,30~40 min使用200 mmol/L NaOH溶液冲洗色谱柱,40~60 min重新平衡系统。基于上述方法,12种混合单糖标准可得到理想分离,各单糖质量浓度标准曲线的相关系数>0.99,检出限(S/N=3)为2.5~21.1 μg/L,平均回收率在77.3%~118.5%。此外,样品预处理分析表明,最佳的胞外多糖除蛋白方法为三氯乙酸法。利用上述优化条件对不同嗜热链球菌产胞外多糖的单糖组成进行分析,结果表明,胞外多糖均由半乳糖胺、鼠李糖、葡糖胺、半乳糖、葡萄糖、甘露糖、半乳糖糖醛酸和葡萄糖醛酸组成。研究建立的色谱分离和胞外多糖预处理方法可为乳酸菌胞外多糖的单糖组成分析提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
聂彩清
艾连中
熊智强
张汇
关键词:  嗜热链球菌  胞外多糖  脱蛋白  高效阴离子交换色谱  单糖组成    
Abstract: This work aimed to establish a stable method to determine monosaccharide composition of Streptococcus thermophilus exopolysaccharides by anion exchange chromatography. The gradient elution procedure was optimized with different concentration and the different deproteinization method was analyzed. The optimal chromatographic conditions were as follows: CarboPac PA20 column (3 mm × 150 mm) was used with elute rate at 0.5 mL/min, the eluent was 1.75 mmol/L NaOH for the first 20 min, followed by a linear NaAc gradient (50-200 mmol/L) with fixed 1.75 mmol/L NaOH for the next 10 min to analyze the neutral with 1.75 mmol/L NaOH. Based on the optimal method, twelve mixed monosaccharide standards were separated. The correlation coefficients of each standard were greater than 0.99, the limits of detection were 2.5-21.1 μg/L, and the recoveries ranged were 77.3%-118.5%. In addition, the optimal deproteinization method was trichloroacetic acid. The monosaccharide composition of exopolysaccharides from four S. thermophilus strains were analyzed with optimized method. The results revealed that the exopolysaccharides were mainly composed of galactosamine, rhamnose, glucosamine, galactose, glucose, mannose, galacturonic acid, and glucuronic acid. This study provides a reliable method for the monosaccharide composition analysis of exopolysaccharides from S. thermophilus.
Key words:  Streptococcus thermophilus    exopolysaccharides    deproteinization    high performance anion exchange chromatography    monosaccharide composition
收稿日期:  2020-12-14      修回日期:  2020-12-31           出版日期:  2021-08-15      发布日期:  2021-08-23      期的出版日期:  2021-08-15
基金资助: 国家杰出青年科学基金项目(32025029);国家自然科学基金面上项目(31771956)
作者简介:  硕士研究生(张汇副教授为通讯作者,E-mail:zhh8672@126.com)
引用本文:    
聂彩清,艾连中,熊智强,等. 高效阴离子交换色谱-脉冲安培法分析嗜热链球菌胞外多糖的单糖组成[J]. 食品与发酵工业, 2021, 47(15): 255-261.
NIE Caiqing,AI Lianzhong,XIONG Zhiqiang,et al. Determination of monosaccharide composition of Streptococcus thermophilus exopolysaccharides using high performance anion exchange chromatography with pulsed amperometric detector[J]. Food and Fermentation Industries, 2021, 47(15): 255-261.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.026465  或          http://sf1970.cnif.cn/CN/Y2021/V47/I15/255
[1] CUI Y H,JIANG X,HAO M Y,et al.New advances in exopolysaccharides production of Streptococcus thermophilus[J].Archives of Microbiology,2017,199(6):799-809.
[2] CHE H Q,ZHANG H,TIAN Y J,et al.Exopolysaccharide from Streptococcus thermophilus as stabilizer in fermented dairy:Binding kinetics and interactions with casein of milk[J].International Journal of Biological Macromolecules,2019,140:1 018-1 025.
[3] PACHEKREPAPOL U,LUCEY J A,GONG Y,et al.Characterization of the chemical structures and physical properties of exopolysaccharides produced by various Streptococcus thermophilus strains[J].Journal of Dairy Science,2017,100(5):3 424-3 435.
[4] XU Z Y,GUO Q B,ZHANG H,et al.Exopolysaccharide produced by Streptococcus thermophiles S-3:Molecular,partial structural and rheological properties[J].Carbohydrate Polymers,2018,194:132-138.
[5] LI S Q,SHAH N P.Antioxidant and antibacterial activities of sulphated polysaccharides from Pleurotus eryngii and Streptococcus thermophilus ASCC 1275[J].Food Chemistry,2014,165:262-270.
[6] ZHANG J,CAO Y Q,WANG J,et al.Physicochemical characteristics and bioactivities of the exopolysaccharide and its sulphated polymer from Streptococcus thermophilus GST-6[J].Carbohydrate Polymers,2016,146:368-375.
[7] SUN N X,LIU H P,LIU S J,et al.Purification,preliminary structure and antitumor activity of exopolysaccharide produced by Streptococcus thermophilus CH9[J].Molecules,2018,23(11):e2898.
[8] DEL PIANO M,BALZARINI M,CARMAGNOLA S,et al.Assessment of the capability of a gelling complex made of Tara gum and the exopolysaccharides produced by the microorganism Streptococcus thermophilus ST10 to prospectively restore the gut physiological barrier:A pilot study[J].Journal of Clinical Gastroenterology,2014,48:S56-S61.
[9] SVENSSON M,WAAK E,SVENSSON U,et al.Metabolically improved exopolysaccharide production by Streptococcus thermophilus and its influence on the rheological properties of fermented milk[J].Applied and Environmental Microbiology,2005,71(10):6 398-6 400.
[10] TANG W,LIU D,YIN J Y,et al.Consecutive and progressive purification of food-derived natural polysaccharide:Based on material,extraction process and crude polysaccharide[J].Trends in Food Science & Technology,2020,99:76-87.
[11] 李仁勇,梁立娜,牟世芬.高效阴离子交换色谱-脉冲安培检测食品中糖的应用进展[J].食品与发酵工业,2010,36(7):97-101.LI R Y,LIANG L N,MOU S F.Application advance in analysis of food carbohydrates with high performance anion exchange chromatography-pulsed amperometric detection[J].Food and Fermentation Industries,2010,36(7):97-101.
[12] 乐胜锋, 王尉,王雅萱,等.离子色谱-脉冲安培法测定芦荟多糖中7种单糖的含量[J].色谱,2019,37(3):319-324.LE S F,WANG W,WANG Y X,et al.Determination of seven monosaccharides in Aloe polysaccharide using ion chromatography with pulsed amperometric detector[J].Chinese Journal of Chromatography,2019,37(3):319-324.
[13] FELZ S,VERMEULEN P,VAN LOOSDRECHT M C M,et al.Chemical characterization methods for the analysis of structural extracellular polymeric substances (EPS)[J].Water Research,2019,157:201-208.
[14] MAGER D M,THOMAS A D.Extracellular polysaccharides from cyanobacterial soil crusts:A review of their role in dryland soil processes[J].Journal of Arid Environments,2011,75(2):91-97.
[15] 刘晓莹,马璐瑶,王力,等.基于高效阴离子色谱-脉冲安培法优化阿拉伯木聚糖单糖组成分析[J].分析化学,2017,45(3):416-422.LIU X Y,MA L Y,WANG L,et al.Monosaccharide composition analysis of arabinoxylan by high performance anion exchange chromatography with pulsed amperometric detection[J].Chinese Journal of Analytical Chemistry,2017,45(3):416-422.
[16] 李静, 李仁勇,梁立娜.毛细管型离子色谱-脉冲安培法检测枸杞多糖的单糖组成[J].分析化学,2012,40(9):1 415-1 420.LI J,LI R Y,LIANG L N.Determination of monosaccharide constituents in Lycium barbarum polysaccharide using capillary ion chromatography with pulsed amperometric detection[J].Chinese Journal of Analytical Chemistry,2012,40(09):1 415-1 420.
[17] ZHANG Z Q,KHAN N M,NUNEZ K M,et al.Complete monosaccharide analysis by high-performance anion-exchange chromatography with pulsed amperometric detection[J].Analytical Chemistry,2012,84(9):4 104-4 110.
[18] REN W,XIA Y J,WANG G Q,et al.Bioactive exopolysaccharides from a S.thermophilus strain:Screening,purification and characterization[J].International Journal of Biological Macromolecules,2016,86:402-407.
[19] DUBOIS M,GILLES K A,HAMILTON J K,et al.Colorimetric method for determination of sugars and related substances[J].Analytical Chemistry,1956,28(3):350-356.
[20] BRADFORD M M.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J].Analytical Biochemistry,1976,72(1-2):248-254.
[21] WU D T,GUO H,LIN S,et al.Review of the structural characterization,quality evaluation,and industrial application of Lycium barbarum polysaccharides[J].Trends in Food Science & Technology,2018,79:171-183.
[22] ALYASSIN M,CAMPBELL G M,MASEY O’NEILL H,et al.Simultaneous determination of cereal monosaccharides,xylo-and arabinoxylo-oligosaccharides and uronic acids using HPAEC-PAD[J].Food Chemistry,2020,315.DOI:10.1016/j.foodchem.2020.126221.
[23] DE SOUZA M F,PEREIRA D S,FREITAS S P,et al.Neutral sugars determination in Chlorella:Use of a one-step dilute sulfuric acid hydrolysis with reduced sample size followed by HPAEC analysis[J].Algal Research,2017,24:130-137.
[24] XIE J H,SHEN M Y,NIE S P,et al.Analysis of monosaccharide composition of Cyclocarya paliurus polysaccharide with anion exchange chromatography[J].Carbohydrate Polymers,2013,98(1):976-981.
[25] PINTADO A I E,FERREIRA J A,PINTADO M M E,et al.Eficiency of purification methods on the recovery of exopolysaccharides from fermentation media[J].Carbohydrate Polymers,2020,231.DOI:10.1016/j.carbpol.2019.115703.
[26] 李嘉文, 刘达,刘党生,等.乳酸菌胞外多糖产生菌的筛选与初步研究[J].中国微生态学杂志,2019,31(9):1 027-1 033.LI J W,LIU D,LIU D S,et al.Screening of and preliminary research on exopolysaccharides producing strain[J].Chinese Journal of Microecology,2019,31(9):1 027-1 033.
[27] NIE S P,ZHANG H,LI W J,et al.Current development of polysaccharides from Ganoderma:Isolation,structure and bioactivities[J].Bioactive Carbohydrates and Dietary Fibre,2013,1(1):10-20.
[28] ZHANG H,REN W,GUO Q B,et al.Characterization of a yogurt-quality improving exopolysaccharide from Streptococcus thermophilus AR333[J].Food Hydrocolloids,2018,81:220-228.
[1] 江飞凤, 谭晓辉, 胡鹏刚, 潘雪梅, 闫锦. 超声-微波协同提取柚子皮多糖工艺优化及单糖组成、结构和抗氧化活性分析[J]. 食品与发酵工业, 2021, 47(2): 196-204.
[2] 余意, 王超越, 吴正钧, 张佳, 吴天赐. 四株乳杆菌作为口腔益生菌的特性研究[J]. 食品与发酵工业, 2021, 47(15): 77-83.
[3] 孙盛, 陈作国, 俞赟霞, 曲冬梅, 余腾斐, 李言郡, 陈苏. 产胞外多糖植物乳杆菌WHH589的免疫活性及其在发酵乳中的应用[J]. 食品与发酵工业, 2021, 47(13): 43-50.
[4] 茹元朴, 陈君, 张明辉, 乔为仓, 赵军英, 侯俊财, 陈树兴, 陈历俊. 高效阴离子交换色谱-脉冲安培法测定母乳及婴儿配方粉中的唾液酸[J]. 食品与发酵工业, 2021, 47(11): 221-226.
[5] 赵羽, 陆林, 刘小鸣, 崔树茂, 唐鑫, 陈卫, 赵建新. 基于蔗糖利用能力对豆乳发酵菌株的筛选及其应用[J]. 食品与发酵工业, 2020, 46(9): 43-49.
[6] 陈越, 宋振康, 张海悦. 三氯乙酸法脱除龙葵果多糖中蛋白质的工艺优化[J]. 食品与发酵工业, 2020, 46(24): 198-203.
[7] 邝嘉华, 黄燕燕, 胡金双, 余佳佳, 周钦育, 赵珊, 刘冬梅. 解淀粉芽孢杆菌DMBA-K4高产胞外多糖的发酵条件优化及其抗氧化活性研究[J]. 食品与发酵工业, 2020, 46(22): 28-35.
[8] 韩雨婷, 陈建国, 李周勇, 栾少萌, 康小红. 嗜热链球菌MN-002发酵乳及菌粉体内缓解小鼠疲劳功效分析[J]. 食品与发酵工业, 2020, 46(22): 113-117.
[9] 瞿琳, 艾连中, 赖凤羲, 张汇. 豌豆种皮水溶性多糖的提取优化、动力学与分子特征[J]. 食品与发酵工业, 2020, 46(21): 81-89.
[10] 何念武, 曹思娟, 张咪. 万寿菊多糖的纯化、组成分析及其体外抗氧化和抗肿瘤活性研究[J]. 食品与发酵工业, 2020, 46(15): 216-224.
[11] 丁宁, 艾连中, 赖凤羲, 张汇, 宋子波. 百香果皮果胶的分子特征及Ca2+与Zn2+致流变变化的研究[J]. 食品与发酵工业, 2020, 46(14): 77-84.
[12] 卢承蓉, 叶美芝, 上官文丹, 陈松, 钟青萍. 高产胞外多糖乳酸菌的诱变育种及其益生特性[J]. 食品与发酵工业, 2020, 46(12): 14-20.
[13] 裴芳艺, 马岩石, 陈雪. 产胞外多糖葡糖杆菌的分离鉴定及系统发育分析[J]. 食品与发酵工业, 2020, 46(12): 121-126.
[14] 查飞, 王洲, 薛正莲, 蒋雪彪, 纪国辉. 副溶血性弧菌生物膜形成及表面活性剂的影响[J]. 食品与发酵工业, 2019, 45(9): 49-54.
[15] 洛雪, 时旭, 史海粟, 杜阿楠, 陈茜, 乌日娜, 武俊瑞. 嗜热链球菌的电转化条件[J]. 食品与发酵工业, 2019, 45(6): 65-69.
[1] WU Xiang-yi et al . Effect of yak milk casein hydrolysates on protein carbonyl content and activity of antioxidant enzymes of oxidative damaged HepG2 cells induced by H2O2[J]. Food and Fermentation Industries, 2017, 43(11): 34 -38 .
[2] ZHANG Dong et al. Effect of different amounts of salt on quality of bacon[J]. Food and Fermentation Industries, 2017, 43(11): 159 .
[3] . The Absorption of Crosslinked PVP to Tea Polyphenols[J]. Food and Fermentation Industries, 2002, 28(4): 7 .
[4] . Determination and Property Research on Main Starter Bacteria of Yogurt to Induce Postacidification[J]. Food and Fermentation Industries, 2002, 28(4): 24 .
[5] . Study on the Extraction and Decoloration Process of Insoluble Dietary Fiber from Apple Pomace[J]. Food and Fermentation Industries, 2002, 28(5): 10 .
[6] . Effects of Surfactants and Polysaccharides on Protein-stabilized Emulsions[J]. Food and Fermentation Industries, 2002, 28(6): 61 .
[7] . [J]. Food and Fermentation Industries, 2002, 28(6): 78 .
[8] . Studies on the Fermentation Medium of the Trehalose Synthase-Producing Strain[J]. Food and Fermentation Industries, 2002, 28(7): 34 .
[9] Zhang Lihua,Han Yongbin,Sun Jing,Lu Xiaoxue,Gu Zhenxin,Chen Peiqi,Liu Anhu,Qiu Yongxin. Optimizing Amylase Usage in Pretreatment of Lotus Root with Response Surface Methodology[J]. Food and Fermentation Industries, 2005, 31(10): 81 .
[10] . [J]. Food and Fermentation Industries, 2001, 27(9): 70 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn