Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (15): 150-156    DOI: 10.13995/j.cnki.11-1802/ts.026572
  生产与科研应用 本期目录 | 过刊浏览 | 高级检索 |
巴氏杀菌、微滤及紫外处理对羊乳中菌落数与活性蛋白的影响
徐姝, 刘大松, 李志宾, 张文锦, 赵磊, 周鹏*
(食品科学与技术国家重点实验室(江南大学),江苏 无锡,214122)
Effect of pasteurization, microfiltration and ultraviolet-C treatments on microorganism counts and bioactive proteins in goat milk
XU Shu, LIU Dasong, LI Zhibin, ZHANG Wenjin, ZHAO Lei, ZHOU Peng*
(State Key Laboratory of Food Science and Technology,Jiangnan University,Wuxi 214122,China)
下载:  HTML  PDF (1751KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 比较高温短时(high temperature short time,HTST)、1.4和0.8 μm孔径微滤(MF-1.4、MF-0.8)、紫外(UV-C)处理对脱脂羊乳中微生物和活性蛋白的影响。总菌落经MF-1.4、MF-0.8和UV-C处理均达到与HTST相同的去除率;MF-1.4和MF-0.8处理能有效地截留芽孢和体细胞,HTST和UV-C处理对芽孢和体细胞无显著性效果。经MF-1.4处理后,羊乳活性成分的保留显著高于HTST处理,活性乳铁蛋白、免疫球蛋白A、免疫球蛋白G、黄嘌呤氧化酶、乳过氧化物酶、免疫球蛋白M保留率分别为90%、88%、87%、72%、97%和94%。天然乳清蛋白经HTST处理降低至84%,经MF-1.4、MF-0.8、UV-C处理则完全保留。羰基经HTST和UV-C处理增加18%、19%,巯基经HTST处理降低7%,两者经MF-1.4和MF-0.8处理后保持不变。MF-1.4处理膜通量较高,初始降低41%之后保持稳定,MF-0.8处理后膜通量逐渐降低85%。酪蛋白经MF-1.4处理完全透过,经MF-0.8处理透过74%。综上,MF-1.4处理对羊乳中微生物去除和活性蛋白保留具有较好的效果。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐姝
刘大松
李志宾
张文锦
赵磊
周鹏
关键词:  山羊乳  高温短时巴氏杀菌  陶瓷膜微滤  紫外辐射  活性蛋白    
Abstract: This study compared the effects of high-temperature short-time (HTST) pasteurization, microfiltration (MF) with 1.4 or 0.8 μm pore diameters, and ultraviolet-C (UV-C) irradiation treatments on microorganisms and bioactive proteins in goat skim milk. Bacteria reduction, which with MF-1.4, MF-0.8 and UV-C treatments, reached the same level as HTST. Moreover, MF-1.4 and MF-0.8 treatments can effectively trap spores and somatic cells, however, HTST and UV-C treatments have no significant effect on them. Bioactive lactoferrin, immunoglobulin A (IgA), IgG, xanthine oxidase, lactoperoxidase and IgM were retained at 86%, 68%, 51%, 49%, 47% and 28% using HTST. And above indicators showed 90%, 88%, 87%, 72%, 97% and 94% using MF-1.4 and 82%, 82%, 80%, 70%, 85% and 88% using MF-0.8. Using UV-C, these indexes were 94%, 91%, 75%, 86%, 93% and 97% respectively. Besides, native serum proteins were retained at 84% using HTST, and completely using MF-1.4, MF-0.8 and UV-C. Carbonyls were increased by 18% and 19% using HTST and UV-C, and sulfhydryls were reduced by 7% using HTST, while both were unaffected using MF-1.4 and MF-0.8.Furthermore, flux for 1.4 μm MF was higher and remained steady after an initial decrease of 41%, while flux for 0.8 μm MF decreased progressively by 85% until end of processing which resulting in complete and 74% passages of casein micelles using 1.4 and 0.8 μm MF, respectively. These results showed that MF-1.4 treatment had a better effect and application potential for microbial removal and bioactive protein retention.
Key words:  goat milk    high-temperature short-time pasteurization    ceramic membrane microfiltration    ultraviolet-c irradiation    bioactive protein
收稿日期:  2020-12-27      修回日期:  2021-02-23           出版日期:  2021-08-15      发布日期:  2021-08-23      期的出版日期:  2021-08-15
基金资助: 国家自然科学基金青年科学基金项目(31901613);国家十三五重点研发计划项目(2017YFD0400600);江南大学食品科学与技术国家重点实验室自由创新探索资助课题项目(SKLF-ZZA-202004)
作者简介:  硕士研究生(周鹏教授为通讯作者,E-mail:zhoupeng@jiangnan.edu.cn)
引用本文:    
徐姝,刘大松,李志宾,等. 巴氏杀菌、微滤及紫外处理对羊乳中菌落数与活性蛋白的影响[J]. 食品与发酵工业, 2021, 47(15): 150-156.
XU Shu,LIU Dasong,LI Zhibin,et al. Effect of pasteurization, microfiltration and ultraviolet-C treatments on microorganism counts and bioactive proteins in goat milk[J]. Food and Fermentation Industries, 2021, 47(15): 150-156.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.026572  或          http://sf1970.cnif.cn/CN/Y2021/V47/I15/150
[1] MANDALARI G,ADEL-PATIENT K,BARKHOLT V,et al.In vitro digestibility of beta-casein and beta-lactoglobulin under simulated human gastric and duodenal conditions:A multi-laboratory evaluation[J].Regulatory Toxicology and Pharmacology,2009,55(3):372-381.
[2] BOURLIEU C,MéNARD O,DE LA CHEVASNERIE A,et al.The structure of infant formulas impacts their lipolysis,proteolysis and disintegration during in vitro gastric digestion[J].Food Chemistry,2015,182:224-235.
[3] HODGKINSON A J,MCDONALD N A,KIVITS L J,et al.Allergic responses induced by goat milk αS1-casein in a murine model of gastrointestinal atopy[J].Journal of Dairy Science,2012,95(1):83-90.
[4] LARA-VILLOSLADA F,OLIVARES M,JIMÉNEZ J,et al.Goat milk is less immunogenic than cow milk in a murine model of atopy[J].Journal of Pediatric Gastroenterology and Nutrition,2004,39(4):354-360.
[5] XIONG L,LI C K,BOEREN S,et al.Effect of heat treatment on bacteriostatic activity and protein profile of bovine whey proteins[J].Food Research International,2020,127:108688.
[6] GRIEP E R,CHENG Y F,MORARU C I.Efficient removal of spores from skim milk using cold microfiltration:Spore size and surface property considerations[J].Journal of Dairy Science,2018,101(11):9 703-9 713.
[7] ELWELL M W,BARBANO D M.Use of microfiltration to improve fluid milk quality[J].Journal of Dairy Science,2006,89:E20-E30.
[8] WANG D,FRITSCH J,MORARU C I.Shelf life and quality of skim milk processed by cold microfiltration with a 1.4-μm pore size membrane,with or without heat treatment[J].Journal of Dairy Science,2019,102(10):8 798-8 806.
[9] SUÁREZ-JACOBO Á,RÜFER C E,GERVILLA R,et al.Influence of ultra-high pressure homogenisation on antioxidant capacity,polyphenol and vitamin content of clear apple juice[J].Food Chemistry,2011,127(2):447-454.
[10] SAUCEDA-GÁLVEZ J N,TIÓ-COMA M,MARTINEZ-GARCIA M,et al.Effect of single and combined UV-C and ultra-high pressure homogenisation treatments on inactivation of Alicyclobacillus acidoterrestris spores in apple juice[J].Innovative Food Science & Emerging Technologies,2020,60:102 299.
[11] 孔凡丕. 微滤除菌技术提高乳品品质的研究[D].北京:中国农业科学院,2011.KONG F P.Study on degerming technology of microfiltration on improve the quality of dairy products[D].Beijing:Chinese Academy of Agricultural Sciences,2011.
[12] ZOU Z Z,BAULAND J,HEWAVITHARANA A K,et al.A sensitive,high-throughput fluorescent method for the determination of lactoperoxidase activities in milk and comparison in human,bovine,goat and camel milk[J].Food Chemistry,2021,339:128 090.
[13] ZOU Z Z,BOUCHEREAU-DE PURY C,HEWAVITHARANA A K,et al.A sensitive and high-throughput fluorescent method for determination of oxidase activities in human,bovine,goat and camel milk[J].Food Chemistry,2021,336:127689.
[14] BRADFORD M M.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J].Analytical Biochemistry,1976,72(1-2):248-254.
[15] ELLMAN G L.Tissue sulfhydryl groups[J].Archives of Biochemistry and Biophysics,1959,82(1):70-77.
[16] LYNCH J M,BARBANO D M,FLEMING J R.Indirect and direct determination of the casein content of milk by Kjeldahl nitrogen analysis:Collaborative study[J].Journal of Aoac International,1998,81(4):763-774.
[17] VISSER S,SLANGEN C J,ROLLEMA H S.Phenotyping of bovine milk proteins by reversed-phase high-performance liquid chromatography[J].Journal of Chromatography A,1991,548:361-370.
[18] 中华人民共和国卫生部,中国国家标准化管理委员会.GB 19645—2010 食品安全国家标准 巴氏杀菌乳[S].北京:中国标准出版社,2010.Ministry of Health of the People’s Republic of China,China National Standardization Management Committee.GB 19645—2010 National food safety standard Pasteurized milk[S].Beijing:China Standard Press,2010.
[19] RANIERI M L,HUCK J R,SONNEN M,et al.High temperature,short time pasteurization temperatures inversely affect bacterial numbers during refrigerated storage of pasteurized fluid milk[J].Journal of Dairy Science,2009,92(10):4 823-4 832.
[20] SANTOS M V,MA Y,BARBANO D M.Effect of somatic cell count on proteolysis and lipolysis in pasteurized fluid milk during shelf-life storage[J].Journal of Dairy Science,2003,86(8):2 491-2 503.
[21] 唐平. 牛奶体细胞快速检测方法的研究[D].杭州:浙江大学,2006.TANG P.Research of fast measuring method of somatic cell count in cow milk[D].Hangzhou:Zhejiang University,2006.
[22] 杨宝雨. 基于陶瓷膜技术的羊乳膜分离工艺研究[D].烟台:烟台大学,2019.YANG B Y.Separation process of goat milk based on ceramic membrane technology[D].Yantai:Yantai University,2019.
[23] ABBRING S,XIONG L,DIKS M A P,et al.Loss of allergy-protective capacity of raw cow’s milk after heat treatment coincides with loss of immunologically active whey proteins[J].Food & Functions,2020,11(6):4 982-4 993.
[24] LIU Y W,ZHANG W J,HAN B S,et al.Changes in bioactive milk serum proteins during milk powder processing[J].Food Chemistry,2020,314(1).DOI:10.1016/j.foodchem.2020.126177.
[25] LORENZEN P C,MARTIN D,CLAWIN-RÄDECKER I,et al.Activities of alkaline phosphatase,γ-glutamyltransferase and lactoperoxidase in cow,sheep and goat’s milk in relation to heat treatment[J].Small Ruminant Research,2010,89(1):18-23.
[26] 张雪喜. 羊乳乳清蛋白的热变性作用及其微观特性和功能性质研究[D].济南:齐鲁工业大学,2018.ZHANG X X.Study on thermodenaturation,microscopically andfunctional properties of whey protein from goat milk[D].Jinan:Qilu University of Technology,2018.
[27] LIU Y W,ZHANG W J,ZHANG L N,et al.Characterizing the changes of bovine milk serum proteins after simulated industrial processing[J].LWT-Food Science and Technology,2020,133(12).DOI:10.1016/j.lwt.2020.110 101.
[28] COSIO M S,MANNINO S,BURATTI S.Electrochemical sensor detecting free sulfhydryl groups:Evaluation of milk heat treatment[J].Journal of Dairy Science,2000,83(9):1 933-1 938.
[29] MEISSNER P M,KEPPLER J K,STÖCKMANN H,et al.Cooxidation of proteins and lipids in whey protein oleogels with different water amounts[J].Food Chemistry,2020,328:127 123.
[30] KEPPLER J K,HEYN T R,MEISSNER P M,et al.Protein oxidation during temperature-induced amyloid aggregation of beta-lactoglobulin[J].Food Chemistry,2019,289(8):223-231.
[31] CHOUDHARY S,ARORA S,KUMARI A,et al.Effect of quality of milk on Maillard reaction and protein oxidation during preparation of cow and buffalo milk khoa[J].Journal of Food Science and Technology,2017,54(9):2 737-2 745.
[32] HEIDEBRECHT H J,KULOZIK U.Fractionation of casein micelles and minor proteins by microfiltration in diafiltration mode.Study of the transmission and yield of the immunoglobulins IgG,IgA and IgM[J].International Dairy Journal,2019,93(6):1-10.
[1] 董占波,陆建良,孙庆磊,董俊杰,梁月荣. 饮料浑浊活性蛋白研究进展[J]. 食品与发酵工业, 2009, 35(5): 136-.
[2] 贾娟,王德良,傅力,王建. 啤酒泡沫活性蛋白质中Z4蛋白质的提取及鉴定[J]. 食品与发酵工业, 2007, 33(2): 133-.
[3] 罗冠中,张泽生. 紫外光辐射对葡萄籽原花色素组成及清除自由基活性的影响[J]. 食品与发酵工业, 2005, 31(10): 41-.
[4] 宋丽萍,陈庆森,籍瑞芳. 植物抽取物对冰核活性细菌表达冰核活性蛋白的影响[J]. 食品与发酵工业, 2004, 30(1): 53-.
[5] 宋丽萍,陈庆森,刘健,阎亚丽. 冰核活性细菌发酵生产冰核活性蛋白产物的研究进展[J]. 食品与发酵工业, 2003, 29(6): 92-.
[6] 阎亚丽,陈庆森,崔细鹏,胡志和,刘剑虹. 冰核活性细菌发酵培养基的优化筛选[J]. 食品与发酵工业, 2003, 29(4): 19-.
[7] 陈庆森,高秀芝,张亚琳,阎亚丽,刘剑虹,庞广昌. 不同培养条件对诱导Pseudomonas syringae高表达冰核活性蛋白的影响[J]. 食品与发酵工业, 2001, 27(1): 8-.
[1] ZOU Wei,WANG Dong,XU Yan. Determination of trace cyanides in Chinese rice wine and its raw materials[J]. Food and Fermentation Industries, 2017, 43(9): 189 .
[2] YAO SU,YU Xue-jian,BAI Fei-rong,CAO Yan-hua,ZHAO Ting,ZHAI Lei,LIU Yang,GE Yuan-yuan,CHENG Kun,FENG Hui-jun,LING Kong,SHI Xiao-meng,WANG Yong-fang,ZHANG Xiao-xia,CHENG Chi. Research on the inventory of microbial species in Chinese traditional fermented foods[J]. Food and Fermentation Industries, 2017, 43(9): 238 .
[3] Liu Cen,Xu Zhinan,Shi Feng,Cen Peilin. Optimizing Fermentation of Polyglutamic Acid by Unrefined Glutamic Acid as Raw Material[J]. Food and Fermentation Industries, 2006, 32(5): 9 .
[4] . [J]. Food and Fermentation Industries, 2003, 29(7): 31 .
[5] . [J]. Food and Fermentation Industries, 2003, 29(9): 111 .
[6] Duan Sufang,Zhang Jinze,Zhou Zhiqiao,Lin Jing. Effect of Heat Treatment to the Stability of Functional Oligosaccharides[J]. Food and Fermentation Industries, 2009, 35(3): 90 .
[7] . [J]. Food and Fermentation Industries, 2009, 35(3): 31 .
[8] JIANG Xiao-ya,ZHENG Jiong. Research advances in drying technology and its impact on the quality of bamboo shoots[J]. Food and Fermentation Industries, 2016, 42(6): 260 .
[9] LI Yan,LU Xiong,SONG Dan-dan. Determination of 73 pesticide residues in concentrated fruit and vegetable juices using gas chromatography-mass spectrometry[J]. Food and Fermentation Industries, 2016, 42(7): 217 .
[10] XIONG Cen,SU Zhi-yi,ZHEN Yan-jie,TANG Lu,LI Yong-le. Application of multicomposition analysis and pattern recognition in identification of geographical indication vinegar[J]. Food and Fermentation Industries, 2016, 42(10): 156 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn