Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (20): 303-311    DOI: 10.13995/j.cnki.11-1802/ts.026575
  综述与专题评论 本期目录 | 过刊浏览 | 高级检索 |
红外辐射技术在农产品干燥中的应用
朱凯阳1, 任广跃1,2*, 段续1,2, 李琳琳1,2
1(河南科技大学 食品与生物工程学院,河南 洛阳,471000)
2(粮食储藏安全河南省协同创新中心,河南 郑州,450001)
Application of infrared radiation technology in drying of agricultural products
ZHU Kaiyang1, REN Guangyue1,2*, DUAN Xu1,2, LI Linlin1,2
1(College of food and Bioengineering, Henan University of science and technology, Luoyang 471000, China)
2(Henan Collaborative Innovation Center for grain storage security, Zhengzhou 450001, China)
下载:  HTML  PDF (2015KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 由于红外线具有穿透性,热量在物料内部率先集聚,温度梯度与湿度梯度相一致,可加快物料的干燥速率。红外辐射技术具有热损失小、热吸收快、节约能源等优点,已被广泛用于粮油、果蔬等农产品的干燥。红外辐射技术应用于大米、小麦、玉米等大宗粮油物料时,可有效避免在物料干燥中产生裂纹,提高干燥品质;应用于香菇、茶树菇、杏鲍菇等食用菌时,可较好地保留干制食用菌的风味、色泽等品质特征;应用于猕猴桃、胡萝卜、苦瓜等果蔬物料时,可极大地保留果蔬原有营养物质和风味。此外,该文还总结了将红外辐射与热风、真空、微波和冷冻干燥等干燥方法相结合,以联合干燥方式加速干燥进程,获得更好的干燥效果的研究。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱凯阳
任广跃
段续
李琳琳
关键词:  红外辐射  农产品干燥  单一干燥  联合干燥  干燥技术    
Abstract: Since the infrared ray has the feature of penetration, it can firstly make the heat aggregate in the material. When the gradient becomes uniform between the temperature and the humidity, drying rate can be greatly improved in the material. Besides, it also possesses the following advantages, such as small loss of heat, quick absorption of heat and being able to save energy. Thus, it can be found in the application of drying agricultural products to large scope, which including grain, oil, fruits and vegetables. For the application of infrared radiation technology into main grain and oil materials such as rice, wheat, corn and so on, the generation of cracks in drying materials can be avoided effectively, therefore the quality of the products also been imporoved. When applying the technology in edible fungus such as mushroom, mushroom of tea, king oyster mushroom and so on, the quality characteristics of dried edible fungus in terms of flavor, color can be preserved. In the application of fruits and vegetables, such as kiwi fruit, carrots, balsam pear and so on, this technology can keep their original nutrients and flavor to a large extent. Furthermore, this technology also elaborates the way to obtain a better drying effect based on the acceleration of the drying process through combined drying, that is, to combine infrared radiation with hot air, vacuum, microwave, freeze-drying, and so on.
Key words:  infrared radiation    the drying of agricultural products    single drying    combined drying    drying technology
收稿日期:  2020-12-28      修回日期:  2021-03-22           出版日期:  2021-10-25      发布日期:  2021-11-18      期的出版日期:  2021-10-25
基金资助: 国家自然科学基金项目(31671907);国家重点研发项目(2017YFD0400901);“智汇郑州·1125聚才计划”(郑政[2017]40 号);河南省高校重点科研项目(20A550006);河南省科技攻关项目(182102110043)
作者简介:  硕士研究生(任广跃教授为通讯作者,E-mail:guangyueyao@163.com)
引用本文:    
朱凯阳,任广跃,段续,等. 红外辐射技术在农产品干燥中的应用[J]. 食品与发酵工业, 2021, 47(20): 303-311.
ZHU Kaiyang,REN Guangyue,DUAN Xu,et al. Application of infrared radiation technology in drying of agricultural products[J]. Food and Fermentation Industries, 2021, 47(20): 303-311.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.026575  或          http://sf1970.cnif.cn/CN/Y2021/V47/I20/303
[1] 国家统计局.中国统计年鉴2019[M].北京:中国统计出版社,2019.
National Bureau of Statistics.China Statistical Yearbook 2019[M].Beijing:China Statistics Press,2019.
[2] 王莉婷,李太平.农产品含义与分类的国际比较[J].世界农业, 2017(1):137-141.
WANG L T, LI T P.International comparison of the meaning and classification of agricultural products[J].World Agriculture, 2017(1):137-141.
[3] MOHAMMADI Z, KASHANINEJAD M, ZIAIIFAR A M, et al.Peeling of kiwifruit using infrared heating technology:A feasibility and optimization study[J].LWT,2019, 99:128-137.
[4] ABOUD S A, ALTEMIMI A B, AL-HIIPHY A R S, et al.A comprehensive review on infrared heating applications in food processing[J].Molecules, 2019, 24(22):4 125.
[5] SAKARE P, PRASAD N, THOMBARE N, et al.Infrared drying of food materials:Recent advances [J].Food Engineering Reviews, 2020, 12(3):381-398.
[6] SALEHI F, et al.Recent applications and potential of infrared dryer systems for drying various agricultural products:A review[J].International Journal of Fruit Science,2020, 20(3):586-602.
[7] 刘国丽. 红外辐射加热用于食品物料干燥的研究[D].天津:天津科技大学, 2014.
LIU G L.Study on drying of food materials by infrared radiation heating[D].Tianjin:Tianjin University of Science and Technology,2014.
[8] ZHANG M, CHEN H Z, MUJUMDAR A S, et al.Recent developments in high-quality drying of vegetables, fruits, and aquatic products[J].Critical reviews in food science and nutrition,2017, 57(6):1 239-1 255.
[9] 翁拓, 吴家正, 范立, 等. 粮食干燥技术的能耗浅析[J]. 节能技术, 2014, 32(3):210-213,218.
WENG T, WU J Z, FAN L, et al. Grain drying technology of energy utilization research[J]. Energy Conservation Technology, 2014, 32(3):210-213; 218.
[10] 贲宗友, 孙艳辉, 史德才, 等.粮食远红外辐射干燥研究进展[J].农产品加工, 2018(20):50-53.
BEN Z Y, SUN Y H, SHI D C, et al.Research progress on far infrared radiation drying of grain[J].Farm Products Processing, 2018(20):50-53.
[11] 王楠, 侯旭杰.新型加热技术在食品加工中的应用及其研究进展[J].食品研究与开发, 2019,40(4):209-215.
WANG N, HOU X J.Application and research progress of new heating technology and its research progress[J].Food Research and Development, 2019, 40(4):209-215.
[12] 葛世明.红外加热50年—从低温辐射到高红外[C].全国第十七届红外加热暨红外医学发展研讨会论文及论文摘要集.青岛:锦州市光学学会, 2019.
GE S M.Infrared radiation from high to low temperature in 50 years[C].Papers and abstracts of the 17th national symposium on infrared heating and infrared medicine development.Qingdao:Jinzhou Optical Society,2019.
[13] SAENGRAYAP R, TANSAKUL A, MITTAL G S.Effect of far-infrared radiation assisted microwave-vacuum drying on drying characteristics and quality of red chilli[J].Journal of Food Science & Technology, 2015, 52(5):2 610-2 621.
[14] 南景宇, 杨富, 杨景发, 等.红外定向强辐射器结构和性能特点分析[J].激光与红外, 2005,35(7):465-468.
NAN J Y, YANG F, YANG J F, et al.Analysis on structure and performance characteristic of infrared directional strong radiant apparatus[J].Laser and Infrared, 2005,35(7):466-468.
[15] 武晓鲁,吴忠林.远红外加热技术的发展及远红外定向强辐射器的应用[J].中国能源, 1999(1):44-45;21.
WU X L, WU Z L.Development of far infrared heating technology and application of far infrared directional strong radiator[J].Energy of China, 1999(1):44-45;21.
[16] 东莞市龙记环保科技有限公司. 一种纳米发热体的远红外辐射元件:中国, 201020027136.9[P],2011-03-23.
Dongguan Longji Environmental Protection Technology Co Ltd.A kind of far infrared radiation element of nano heat generator:China, 201020027136.9[P],2011-03-23.
[17] GHASEMKHANI A, FARAHAT S, MAHDI NASERIAN M, et al.Finite time analysis of endoreversible combined cycle based on the stefan-boltzmann heat transfer law[J].Journal of Chemical, Environmental and Biological Engineering,2020,4(1):25.
[18] MENDIS B G.Planck′s generalised radiation law and its implications for cathodoluminescence spectra[J].Ultramicroscopy,2019, 204:73-80.
[19] RUSIN S P.Determination of true temperature of opaque matter based on its thermal radiation spectrum:Using relative emissivity and the Wien displacement law[J].Journal of Physics:Conference Series, 2015, 653:012102.
[20] 万芳新,李武强,杜小龙,等.胡萝卜切片的超声强化远红外干燥特性及动力学模拟[J].中国农业大学学报,2019,24(8):147-156.
WAN F X, LI W Q, DU X L, et al. Ultrasound-enhanced far-infrared drying characteristics and dynamics simulation of carrot slices[J]. Journal of China Agricultural University, 2019,24(8):147-156.
[21] 李亚. 水分测定天平红外干燥箱温度场模拟技术研究[D].长沙:湖南大学,2016.
LI Y. Study on simulation technique of temperature field for infrared drying oven of moisture analyzer[D]. Changsha: Hunan University, 2016.
[22] 国家统计局.主要农作物产品产量[EB/OL].http://data.stats.gov.cn/easyquery.htm?cn=C01,2020-02-28.
National Bureau of Statistics.Output of main crop products[EB/OL].http://data.stats.gov.cn/easyquery.htm?cn=C01,2020-2-28.
[23] 张兰月. 红外烘烤处理对小麦胚品质及贮藏稳定性的影响[D].杨凌:西北农林科技大学, 2013.
ZHANG L Y. Effects of infrared roasting treatment on quality and storage stability of wheat germ[D]. Yangling: Northwest A & F University, 2013.
[24] KHIR R,PAN Z L,SALIM A, et al.Moisture diffusivity of rough rice under infrared radiation drying[J].LWT - Food Science and Technology,2011,44(4):1 126-1 132.
[25] SMITH D L, ATUNGULU G G, WILSON S A, et al.Deterrence of Aspergillus flavus regrowth and aflatoxin accumulation on shelled corn using infrared heat treatments[J].Applied Engineering in Agriculture, 2020, 36(2):151-158.
[26] NIAMNUY C, NACHAISIN M, POOMSA-AD N, et al.Kinetic modelling of drying and conversion/degradation of isoflavones during infrared drying of soybean[J].Food Chemistry, 2012, 133(3):946-952.
[27] 罗剑毅.稻谷的远红外干燥特性和工艺的实验研究[D].杭州:浙江大学, 2006.
LUO J Y.Experimental study on far infrared drying characteristics and technology of rice[D].Hangzhou:Zhejiang University,2006.
[28] 易婕, 刘云宏, 李海登, 等.紫薯远红外辐射干燥及品质特性[J].食品科学, 2018,39(7):160-167.
YI J, LIU Y H, LI H D, et al.Far infrared radiation drying and quality characteristics of purple potato[J].Food Science, 2018,39(7):160-167.
[29] LIU S Y,YIN H Y,PICKARDM, et al.Influence of infrared heating on the functional properties of processed lentil flours:A study focusing on tempering period and seed size[J]Food Research International,2020,136:109568.
[30] 魏忠彩. 红外玉米穗干燥试验台研制及试验研究[D].淄博:山东理工大学, 2016.
WEI Z C.Development and experimental study of infrared corn ear drying test bed[D].Zibo:Shandong University of Technology,2016.
[31] RATSEEWO J, MEESO N, SIRIAMORNPUN S, et al.Changes in amino acids and bioactive compounds of pigmented rice as affected by far-infrared radiation and hot air drying[J]Food Chemistry, 2020, 306:125644.
[32] 于小禾, 孙嘉文, 黄卉卉, 等.远红外加热对麦胚品质稳定性影响[J].现代面粉工业, 2011,25(4):21-23.
YU X H, SUN J W, HUANG H H, et al.Effect of far infrared heating on quality stability of wheat germ[J].Modern Flour Milling Industry, 2011,25(4):21-23.
[33] BAI T, STONE A K, NICKERSON M T, et al.Effect of tempering moisture and infrared heating temperature on the functionality of Desi chickpea and hull-less barley flours[J].Cereal Chemistry, 2018, 95(4):508-517.
[34] YILMAZ F, YILMAZ TUNCEL N, TUNCEL N B, et al.Stabilization of immature rice grain using infrared radiation[J].Food Chemistry,2018, 253:269-276.
[35] NOSRATI M, ZARE D, SINGH C B, et al.New approach in determination of moisture diffusivity for rough rice components in combined far-infrared drying by finite element method[J].Drying Technology,2020, 38(13):1 721-1 732.
[36] PÉREZ-MONTES A, RANGEL-VARGAS E, LORENZO J M, et al.Edible mushrooms as a novel trend in the development of healthier meat products[J].Current Opinion in Food Science,2021, 37:118-124.
[37] 中国产业信息.2019年中国食用菌产量、进出口情况及细分菌类产量现状分析[EB/OL].http://www.chyxx.com/industry/202002/833926.html,2020-02-14.
CHINA′S INDUSTRIAL INFORMATION.Analysis on the output, import and export of edible fungi and the current situation of subdivided fungi in China in 2019[EB/OL].http://www.chyxx.com/industry/202002/833926.html,2020-02-14.
[38] 麦馨允, 黄斌, 黄娇丽, 等.白玉菇远红外干燥工艺优化及其对品质的影响[J].食品与发酵工业, 2019,45(14):150-157.
MAI X Y, HUANG B, HUANG J L, et al. Optimized far-infrared drying of white Hypsizygus marmoreus and effects on quality[J]. Food and Fermentation Industries, 2019, 45(14):150-157.
[39] 尹旭敏, 张超, 李晓英, 等.不同干燥方法对茶树菇干燥特性的影响[J].西南农业学报, 2013,26(2):778-782.
YIN X M, ZHANG C, LI X Y, et al. Effects of different drying technologies on Agrocybe aegerita drying characteristics[J]. Southwest China Journal of Agricultural Sciences, 2013, 26(2):778-782.
[40] 李晓英, 薛梅.干制方式对茶树菇品质的影响[J].食品工业, 2016, 37(7):146-150.
LI X Y, XUE M.Effect of drying method on the quality of Agrocybe aegerita[J].The Food Industry, 2016, 37(7):146-150.
[41] 刘宗博.双孢菇远红外干燥特性及品质的研究[D].哈尔滨:东北林业大学, 2016.
LIU Z B.Study on far infrared drying characteristics and quality of Agaricus bisporus[D].Harbin:Northeast Forestry University,2016.
[42] 王洪彩. 香菇中短波红外干燥及其联合干燥研究[D].无锡:江南大学, 2014.
WANG H C. Mid-inrfared drying shiitake mushrooms and its hybrid drying study[D]. Wuxi: Jiangnan University, 2014.
[43] ZHAO Y Y, BI J F, YI J Y, et al. Comparison of dynamic water distribution and microstructure formation of shiitake mushrooms during hot air and far infrared radiation drying by low-field nuclear magnetic resonance and scanning electron microscopy[J]. Journal of the Science of Food and Agriculture, 2019, 99(6):2 826-2 834.
[44] 陈思羽, 赵阳, 陶长春, 等.木耳红外变温干燥装置研究[J].中国科技信息, 2017(14):71;73.
CHEN S Y, ZHAO Y, TAO C C, et al.Study on infrared variable temperature drying device for Auricularia auricula[J].China Science and technology information, 2017(14):71;73.
[45] 严启梅, 牛丽影, 袁春新, 等.预处理对杏鲍菇脆片品质的影响[J].食品科学, 2012,33(6):74-77.
YAN Q M, NIU L Y, YUAN C X, et al.Effect of pretreatments on the quality of Pleurotus eryngii chips[J].Food Science,2012,33(6):74-77.
[46] 张苗青. 不同干燥方法对杏鲍菇品质特性的影响[D].晋中:山西农业大学, 2017.
ZHANG M Q. The influence of different dried method on Pleurotus eryngii quality[D]. Jinzhong: Shanxi Agricultural University, 2017.
[47] 前瞻经济学人.2019年中国蔬菜行业运行发展现状分析及2020年市场展望[EB/OL].https://baijiahao.baidu.com/s?id=1663912719048975397&wfr=spider&for=pc,2020-04-14.
FORWARD LOOKING ECONOMIST.Analysis on the operation and development status of China′s vegetable industry in 2019 and market outlook in 2020[EB/OL].https://baijiahao.baidu.com/s?id=1663912719048975397&wfr=spider&for=pc,2020-04-14.
[48] 万江静, 郑霞, 高振江, 等. 红枣片远红外辐射干燥的干燥特性及维生素C变化[J]. 食品工业科技, 2016, 37(8):110-115.
WAN J J, ZHENG X, GAO Z J, et al. Far-infrared drying characteristics and the changes of vitamin C of red jujube sheet[J]. Science and Technology of Food Industry, 2016, 37(8):110-115.
[49] ZENG Y, LIU Y H,ZHANG J Y, et al.Effects of far-infrared radiation temperature on drying characteristics, water status, microstructure and quality of kiwifruit slices[J].Journal of Food Measurement and Characterization,2019,13(4):3 086-3 096.
[50] 秦丹丹. 干制方式对无花果品质的影响及无花果茶的研制[D].太原:山西大学, 2018.
QIN D D. Effects of drying methods on quality of Ficus carica L. fruit and preparation of fig tea[D]. Taiyuan: Shanxi University, 2018.
[51] 刘英. 胡萝卜远红外干燥特性及品质的研究[D].兰州:甘肃农业大学,2018.
LIU Y. The experimental study on the far infrared drying properties and quality of carrots[D]. Lanzhou: Gansu Agricultural University, 2018.
[52] JAFARI F,MOVAGHARNEJAD K,SADEGHI E, et al.Infrared drying effects on the quality of eggplant slices and process optimization using response surface methodology[J].Food Chemistry,2020,333:127423.
[53] 张乐道, 樊丹丹, 任广跃, 等.热泵干燥和远红外干燥干制怀山药溶出性研究[J].食品科技, 2018,43(8):81-84.
ZHANG L D, FAN D D, REN G Y, et al. The solubleness research of Chinese yam under heat pump drying and far-infrared drying[J]. Food Science and Technology, 2018, 43(8):81-84.
[54] SADEGHI E, HAGHIGHI ASL A, MOVAGHARNEJAD K, et al.Optimization and quality evaluation of infrared-dried kiwifruit slices[J].Food Science & Nutrition, 2020, 8(2):720-734.
[55] 杨亮. 苦瓜片热风与红外干燥特性及品质评价[D].重庆:西南大学, 2019.
YANG L.Hot air and infrared drying characteristics and quality evaluation of bitter melon slice[D].Chongqing:Southwest University, 2019.
[56] 刘其耸, 石丽花, 赵巧丽, 等.远红外加热对松花粉脂质氧化及其品质的影响[J].现代食品科技,2020,36(4):63-72.
LIU Q S, SHI L H, ZHAO Q L, et al.Effects of far infrared heating on lipid oxidation and quality of pine pollen[J].Modern Food Technology,2020,36(4):63-72.
[57] 刘云宏, 李晓芳, 苗帅, 等.南瓜片超声-远红外辐射干燥特性及微观结构[J].农业工程学报, 2016,32(10):277-286.
LIU Y H, LI X F, MIAO S, et al. Drying characteristics and microstructures of pumpkin slices with ultrasound combined far-infrared radiation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(10):277-286.
[58] 徐凤英, 李长友, 陈震. 荔枝真空远红外辐射过热干燥的特性[J]. 华中农业大学学报, 2009, 28(4):495-499.
XU F Y, LI C Y, CHEN Z. Drying characteristics of vacuum and selective far-infrared radiation superheat for Litchi chinensis sonn[J]. Journal of Huazhong Agricultural University, 2009, 28(4):495-499.
[59] PONKHAM K, MEESO N, SOPONRONNARIT S, et al.Modeling of combined far-infrared radiation and air drying of a ring shaped-pineapple with/without shrinkage[J].Food and Bioproducts Processing,2012,90(2):155-164.
[60] HEBBAR, H U, VISHWANATHAN K H, RAMESH M N, et al.Development of combined infrared and hot air dryer for vegetables[J].Journal of Food Engineering,2004,65(4):557-563.
[61] 宋小勇. 远红外辅助热泵干燥对铁棍山药片品质影响[J].核农学报, 2015,29(7):1 337-1 343.
SONG X Y. Study on iron yam chips by far-infrared-assisted heat pump drying[J]. Journal of Nuclear Agricultural Sciences, 2015, 29(7):1 337-1 343.
[62] SHI X W, YANG Y, LI Z Y, et al.Moisture transfer and microstructure change of banana slices during contact ultrasound strengthened far-infrared radiation drying[J].Innovative Food Science & Emerging Technologies,2020, 66:102537.
[63] SI X, CHEN Q Q, BI J F, et al.Infrared radiation and microwave vacuum combined drying kinetics and quality of raspberry[J].Journal of Food Process Engineering, 2016, 39(4):377-390.
[64] NIMMOL C, DEVAHASTIN S, SWASDISEVI T, et al.Drying and heat transfer behavior of banana undergoing combined low-pressure superheated steam and far-infrared radiation drying[J].Applied Thermal Engineering, 2007, 27(14-15):2 483-2 494.
[65] NIMMOL C, DEVAHASTIN S, SWASDISEVI T, et al. Drying of banana slices using combined low-pressure superheated steam and far-infrared radiation[J]. Journal of Food Engineering, 2007, 81(3):624-633.
[66] 段续, 张萌, 任广跃, 等.玫瑰花瓣红外喷动床干燥模型及品质变化[J].农业工程学报, 2020,36(8):238-245.
DUAN X, ZHANG M, REN G Y, et al.Drying models and quality changes of rose subjected to infrared assisted spouted bed drying[J].Transactions of the CSAE, 2020,36(8):238-245.
[67] ANTAL T, TAREK-TILISTYÁK J, CZIÁKY Z, et al.Comparison of drying and quality characteristics of pear (Pyrus communis L.) using mid-infrared-freeze drying and single stage of freeze drying [J].International Journal of Food Engineering, 2017, 13(4).DOI:10.1515/ijfe-2016-0294.
[68] DONG L, LEE J H,YUN S S,et al.Far infrared drying characteristics of the microwave-steamed sweet potato[J].Journal of Biosystems Engineering, 2019, 44(2):187-193.
[1] 侯志昀, 段续, 任广跃, 马立, 周四晴, 张萌. 喷动床在农产品干燥中的研究进展[J]. 食品与发酵工业, 2021, 47(4): 275-283.
[2] 阳景阳, 罗莲凤, 骆妍妃, 陈远权, 李子平, 冯红钰, 覃宏宇, 韦锦坚. 桂热2号红茶冷冻干燥关键技术研究及品质评价[J]. 食品与发酵工业, 2021, 47(20): 97-104.
[3] 李湘利, 刘静, 王印壮, 李晓彤, 周生稳. 鸡枞菌热风-微波联合干燥特性及动力学模型[J]. 食品与发酵工业, 2020, 46(21): 107-114.
[4] 坤吉瑞, 闫敬娜, 舒娜, 廖雪利, 童华荣. 不同日晒技术对晒青绿茶中挥发性化合物、脂肪酸和感官品质的影响[J]. 食品与发酵工业, 2020, 46(21): 154-160.
[5] 李明娟, 张雅媛, 游向荣, 周葵, 王颖, 卫萍, 韦林艳. 不同干燥技术对核桃粕蛋白粉体特性的影响[J]. 食品与发酵工业, 2020, 46(16): 164-170.
[6] 孙东宇, 郑志安, 李博睿, 吴敏. 杭白菊干燥技术及干燥品质研究进展[J]. 食品与发酵工业, 2020, 46(15): 295-300.
[7] 许洋, 徐茂, 蒋和体. 不同干燥方法对香菇片品质及微观结构的影响[J]. 食品与发酵工业, 2020, 46(14): 189-197.
[8] 肖怀秋, 李玉珍, 林亲录, 赵谋明, 刘军. 益生菌喷雾干燥影响机制及优化策略分析[J]. 食品与发酵工业, 2019, 45(8): 244-251.
[9] 张记, 孟国栋, 彭桂兰, 张雪峰, 杨玲. 稻谷热风-真空联合干燥工艺参数优化[J]. 食品与发酵工业, 2019, 45(18): 155-161.
[10] 王玲, 田冰, 彭林, 阚建全, 陈厚荣. 热风-微波联合干燥青花椒工艺优化[J]. 食品与发酵工业, 2019, 45(18): 176-182.
[11] 池春欢 , 汪云友 , 陈厚荣. 多指标综合评分法优化辣椒热泵-微波联合干燥工艺[J]. 食品与发酵工业, 2018, 44(6): 172-179.
[12] 李湘利, 刘静, 侯一超, 朱乐乐, 马龙传. 大蒜粒微波-热风联合干燥的工艺优化[J]. 食品与发酵工业, 2018, 44(11): 237-244.
[13] 蒋小雅,郑炯. 竹笋干燥技术及其对竹笋品质的影响[J]. 食品与发酵工业, 2016, 42(6): 260-.
[14] 巩桂芬,李阳. 香蕉片热风-微波真空联合干燥研究[J]. 食品与发酵工业, 2016, 42(11): 138-.
[15] 陈晓旭,易建勇,毕金峰,刘璇,陈芹芹,吴昕烨. 不同联合干燥方式对火龙果粉品质的影响[J]. 食品与发酵工业, 2015, 41(1): 106-.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn