Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (19): 288-295    DOI: 10.13995/j.cnki.11-1802/ts.026742
  综述与专题评论 本期目录 | 过刊浏览 | 高级检索 |
人工神经网络在水产领域中的应用
姜鹏飞1, 郑杰2, 陈瑶1, 孙娜1, 祁立波1, 李德阳1, 林松毅1*
1(大连工业大学 食品学院,国家海洋食品工程技术研究中心,辽宁 大连,116033)
2(辽宁省海洋水产科学研究院,辽宁 大连,116023)
Application of artificial neural network in aquaculture
JIANG Pengfei1, ZHENG Jie2, CHEN Yao1, SUN Na1, QI Libo1, LI Deyang1, LIN Songyi1*
1(National Engineering Research Center of Seafood,School of Food Science and Technology, Dalian Polytechnic University,Liaoning 116033,China)
2(Liaoning Ocean and Fisheries Science Research Institute,Liaoning 116023,China)
下载:  HTML  PDF (2445KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 人工神经网络作为一种预测模型,具有非线性信息处理能力,被广泛应用于自动化、医学、经济、化工等领域。该文总结了人工神经网络在水产品中的应用情况,包括水产养殖过程中物种识别、养殖环境监控、养殖技术管理以及水产加工过程中工艺条件的优化,同时总结了水产品中蛋白质、脂质、糖类等活性成分定量监控,并且以营养性、安全性和保藏性的角度对水产品进行品质评价。最后,在此基础上对人工神经网络在水产方面的应用进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姜鹏飞
郑杰
陈瑶
孙娜
祁立波
李德阳
林松毅
关键词:  人工神经网络  水产品  养殖技术  工艺优化  活性成分  品质评价    
Abstract: Artificial neural networks as a kind of forecasting model,which has the non-linear information processing ability,are widely used in automation,medical treatment,economy,chemical industry and other fields.In this paper,we summarizes the application of artificial neural networks (ANN) in the aquatic products,including species identification,breeding environment explanation,breeding technology management.In addition,it mainly involves the quantitative monitoring of active ingredients such as protein,lipid,carbohydrate in aquatic products,and the quality of aquatic products is evaluated from the perspective of nutrition,safety and preservation.
Key words:  artificial neural network    aquatic products    breeding technology    process optimization    active ingredients    quality evaluation
收稿日期:  2021-01-13      修回日期:  2021-04-12                发布日期:  2021-11-04      期的出版日期:  2021-10-15
基金资助: 国家重点研发计划“蓝色粮仓科技创新”重点专项(2019YFD0902000)
作者简介:  硕士,高级工程师(林松毅教授为通讯作者,E-mail:linsongyi730@163.com)
引用本文:    
姜鹏飞,郑杰,陈瑶,等. 人工神经网络在水产领域中的应用[J]. 食品与发酵工业, 2021, 47(19): 288-295.
JIANG Pengfei,ZHENG Jie,CHEN Yao,et al. Application of artificial neural network in aquaculture[J]. Food and Fermentation Industries, 2021, 47(19): 288-295.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.026742  或          http://sf1970.cnif.cn/CN/Y2021/V47/I19/288
[1] 吴燕燕, 陶文斌,张涛.计算机模拟技术在食品加工中的研发现状和趋势[J].中国渔业质量与标准,2018,8(2):1-8.
WU Y Y,TAO W B,ZHANG T.Advance on computer Simulation technology in food processing[J].Chinese Fishery Quality and Standards,2018,8(2):1-8.
[2] 卢晓建, 张晓康,王宾,等.基于Seesaw门的双向联想记忆神经网络[J].广州大学学报(自然科学版),2020,19(1):42-49.
LU X J,ZHANG X K,WANG B,et al.Bidirectional associative memory neural network based on Seesaw gate[J].Journal of guangzhou university (natural science edition),2020,19(1):42-49.
[3] RICARDO M,VLADIMIR K,ALVES J H G M,et al.Nonlinear wave ensemble averaging in the gulf of Mexico using neural networks[J].Journal of Atmospheric and Oceanic Technology,2019,36(1)DOI:10.1175/JTECH-D-18-0099.1.
[4] 张明.基于计算机视觉技术的马铃薯病害识别研究[D].兰州:甘肃农业大学,2018
ZHANG M.Research on potato disease recognition based on computer vision technology[D].Lanzhou:Gansu Arigcultural University,2018.
[5] YEEKHADAY T,MUANGSIN V,GOWANICH C.Neural network based application with particle swarm optimization algorithm in prediction model of L.vannamei shrimp cultivation system[J].International Journal of Civil Engineering and Technology,2018,9(6):971-979.
[6] 管彬彬,陈彬.基于可视嗅觉指纹技术的水产品新鲜度快速表征[J].食品与发酵工业,2019,45(9):171-175.
GUAN B B,CHEN B.Rapid characterization of aquatic products' freshness based on colorimetric sensor array[J].Food and Fermentation Industries,2019,45(9):171-175.
[7] 苏炯铭, 刘鸿福,项凤涛,等.深度神经网络解释方法综述[J].计算机工程,2020,46(9):1-15.
SU J M,LIU H F,XIANG F T,et al.Survey of Interpretation Methods for Deep Neural Networks[J].Computer Engineering,2020,46(9):1-15.
[8] EKPENYONG M,ASITOK A,ANTAI S,et al.Statistical and artificial neural network approaches to modeling and optimization of fermentation conditions for production of a surface/bioactive glyco-lipo-peptide[J].International Journal of Peptide Research and Therapeutics,2021,27(1):475-495.
[9] 李海涛, 刘泰麟.基于决策树优化的BP神经网络在海参养殖产量预测中的应用[J].水产学杂志,2019,32(5):71-75.
LI H T,LIU T L.Application of BP neural network based on decision tree optimization in sea cucumber breeding yield prediction[J].Journal of Fisheries,2019,32(5):71-75.
[10] ALMERO V J,CONCEPCION R,ROSALES M,et al.An aquaculture-based binary classifier for fish detection using multilayer artificial neural network[C].2019 IEEE 11th International Conference on Humanoid,Nanotechnology,Information Technology,Communication and Control,Environment,and Management (HNICEM).IEEE,2019.
[11] 谢万里, 蒲斌,王涛,等.人工神经网络在活鱼运输中水质评价的应用[J].江苏农业科学,2019,47(4):134-139.
XIE W L,PU B,WANG T,et al.Application of artificial Neural network in water Quality Evaluation of live fish transport[J].Jiangsu Agricultural Sciences,2019,47(4):134-139.
[12] 马真. 人工神经网络在对虾养殖水质预测中的应用[D].中国海洋大学,2013.
MA Z.Application of artificial neural network in water Quality prediction of penaeus chinensis[D].Ocean University of China,2013.
[13] CARBAJAL H J J,SÁNCHEZ-FERNÁNDEZ L P.Neural network modelling for dissolved oxygen effects in extensive Litopenaeus vannamei culture[M]//Advances in Soft Computing.Cham:Springer International Publishing,2017:132-140.
[14] CAO H,QU W J,YANG X L.A rapid determination method for chemical oxygen demand in aquaculture wastewater using the ultraviolet absorbance spectrum and chemometrics[J].Analytical Methods,2014,6(11):3 799-3 803.
[15] 柳海涛,孙双科,郑铁刚,等.水电站下游鱼类产卵场水温的人工神经网络预报模型[J].农业工程学报,2018,34(4):185-191.
LIU H T,SUN S K,ZHENG T G,et al.Prediction of water temperature regulation for spawning sites at downstream of hydropower station by artificial neural network method[J].Transactions of the Chinese Society of Agricultural Engineering,2018,34(4):185-191.
[16] 倪玉红,孙擎,王学林,等.盱眙龙虾池塘夏季水温与溶解氧变化特征及预报模型研究[J].中国农学通报,2015,31(32):33-39.
NI Y H,SUN Q,WANG X L,et al.Changing characteristics and prediction model of water temperature and dissolved oxygen in Xuyi lobster pond in summer[J].Chinese AgriculturalScience Bulletin,2015,31(32):33-39.
[17] JABEEN K,AHAMED K I.Abalone age prediction using artificial neural network[J].IOSR Journal of Computer Engineering,2016,18(5):34-38.
[18] 朱艺峰,陈芝丹,关文静,等.鱼类饥饿处理量化及处理因子贡献率的神经网络随机化测试[J].应用生态学报,2008,19(3):667-673.
ZHU Y F,CHEN Z D,GUAN W J,et al.Quantification of fish starvation treatments and randomization test for the contribution rates of treatment factors by BP network[J].Chinese Journal of Applied Ecology,2008,19(3):667-673.
[19] FRANCO B M,NAVAS L M,GÓMEZ C,et al.Monoalgal and mixed algal cultures discrimination by using an artificial neural network[J].Algal Research,2019,38:101 419
[20] HIMABINDU K,JYOTHI S,MAMATHA D M.Classification of squids using morphometric measurements[J].Gazi University Journal of Science,2017,30(2):61-71.
[21] 张帆,徐建瑜.基于图像特征与竞争型神经网络的蟹苗密度估计[J].计算机应用与软件,2017(8):236-240.
ZHANG F,XU J Y.Crab larvae density estimation based on image feature and competitive neural network[J].Computer Applications and Software2017(8):236-240.
[22] MOSLEH M A,MANSSOR H,MALEK S,et al.A preliminary study on automated freshwater algae recognition and classification system[J].Bmc Bioinformatics,2012,13(17):S25.
[23] ATIA D M,FAHMY F H,AHMED N M,et al.Design and control of PEM fuel cell diffused aeration system using artificial intelligence techniques[J].International Journal of Electrical,Computer,Electronics and Communication Engineering,2011,5(9):60-67.
[24] LEUNG P S,TRAN L T.Predicting shrimp disease occurrence:artificial neural networks vs.logistic regression[J].Aquaculture,2000,187(1-2):35-49.
[25] ABDELLATIF M,ATHERTON W,ALKHADDAR R M,et al.Quantitative assessment of sewer overflow performance with climate change in northwest England[J].Hydrological Sciences Journal,2015,60(4):636-650.
[26] XU D S,LI X C,WANG C,et al.Forecasting of litopenaeus vannamei prices with artificial neural networks[C].Advances in Education and Management, 2011:281-287.DOI:10.1007/978-3-642-23062-2_40.
[27] 李宏伟, 高小翔,程可军.基于小波神经网络的鱼类价格预测研究[J].中国渔业经济,2014,32(4):61-66.
LI H W,GAO X X,CHENG K J.Research on price forecasting of fish based on wavelet neural network method[J].Chinese Fisheries Economics,2014,32(4):61-66.
[28] 胡涛.基于非参数的水产品价格预测系统研究[D].北京:中国农业大学,2005.
HU T.A forecasting system for aquatic products price based on non-parameter model[D].Beijing:China Agricultural University,2005.
[29] CHINDAPAN N,SABLANI S S,CHIEWCHAN N,et al.Modeling and optimization of electrodialytic desalination of fish sauce using artificial neural networks and genetic algorithm[J].Food & Bioprocess Technology,2013,6(10):2 695-2 707.
[30] 王回忆,孔春丽,罗永康.鲟鱼片冷藏过程中品质变化规律与预测模型[J].中国农业大学学报,2016,21(8):98-104.
WANG H Y,KONG C L,LUO Y K.Modeling quality changes in sturgeon (Acipenser sinensis) fillets during storage [J].Journal of China Agricultural University,2016,21(8):98-104.
[31] TATAR F,CENGIZ A,KAHYAOGLU T.Effect of hemicellulose as a coating material on water sorption thermodynamics of the microencapsulated fish oil and artificial neural network (ANN) modeling of isotherms[J].Food and Bioprocess Technology,2014,7(10):2 793-2 802.
[32] GHOSH P,DAS S,GANGULY A,et al.Optimization of xylose production by alkaline hydrolysis of water hyacinth biomass using response surface methodology and artificial neural network[J].International Journal of Applied Biology and Pharmaceutical Technology,2015,6(3):34-45.
[33] 张斌,孙兰萍,施颖,等.基于人工神经网络法优化河蚌多糖超高压提取工艺[J].食品机械,2016,32(11):148-153.
ZHANG B,SUN L P,SHI Y,et al.Optimization on ultra high pressure extraction process of mussel polysaccharide based on artificial neural network[J].Food & Machinery,2016,32(11):148-153.
[34] 吴燕燕,宫晓静,李来好,等.风味蛋白酶水解合浦珠母贝肉制备抗菌肽人工神经网络法优化工艺[J].食品科学,2011,32(20):63-68.
WU Y Y,GONG X J,LI L H,et al.Process optimization for preparation of antimicrobial peptides fromPinctada fucata muscle by flavourzyme hydrolysis using artificial production neural network[J].Food Science,2011,32(20):63-68.
[35] 邓志程, 吉宏武,曹文红,等.人工神经网络优化酶法制备马氏珠母贝低聚肽的工艺研究[J].广东农业科学,2014,41(24):99-104.
DENG Z C,JI H W,CAO W H,et al.Optimization of hydrolysis conditions for production of oligosaccharide from Pinctada martensii using artificial neural networks[J].Guangdong Agricultural Sciences,2014,41(24):99-104.
[36] 刘斌,马海乐,李树君,等.紫菜降压肽酶膜耦合反应制备工艺RBF神经网络优化[J].农业机械学报,2010,41(5):120-125.
LIU B,MA H L,LI S J,et al.Production of ACE inhibitor peptides fromPorphyra yezoensis in batch membrane reactor based on RBF-ANN[J].Transactions of the Chinese Society for Agricultural Machinery,2010,41(5):120-125.
[37] 续晓琪,薛长湖,常耀光.基于人工神经网络的海参岩藻聚糖硫酸酯酶解模型建立及抗氧化活性研究[J].中国食品学报,2019,19(1):20-27.
XU X Q,XUE C H,CHANG Y G.The model of enzymatic degraded sea cucumber fucoidans established by artificial neural network and studies on their antioxidant activity[J].Journal of Chinese Institute of Food Science and Technology,2019,19(1):20-27.
[38] VALIZADEH H,POURMAHMOOD M,MOJARRAD J S,et al.Application of artificial intelligent tools to modeling of glucosamine preparation from exoskeleton of shrimp[J].Drug Development and Industrial Pharmacy,2009,35(4):396-407.
[39] ROSSI P,GAYOL M,RENAUDO C,et al.The use of artificial neural network modeling to represent the process of concentration by molecular distillation of omega-3 from squid oil[J].Grasas y Aceites,2014,65(4):0231141.
[40] KLAYPRADIT W,KERDPIBOON S,SINGH R K.Application of artificial neural networks to predict the oxidation of menhaden fish oil obtained from fourier transform infrared spectroscopy method[J].Food and Bioprocess Technology,2011,4(3):475-480.
[41] GIESE E,WINKELMANN O,ROHN S,et al.Determining quality parameters of fish oils by means of 1H nuclear magnetic resonance,mid-infrared,and near-infrared spectroscopy in combination with multivariate statistics[J].Food Research International,2018,106(4):116-128.
[42] ABAKAROV A,TEIXEIRA A,SIMPSON R,et al.Modeling of squid protein hydrolysis:Artificial neural network approach[J].Journal of food process engineering,2011,34(6):2 026-2 046.
[43] 李琳, 赵谋明,张黎.利用人工神经网络优化制备鳙鱼抗氧化肽[J].四川大学学报(工程科学版),2006,38(1):81-85.
LI L,ZHAO M M,ZHANG L.Production of antioxidant peptides from bighead carp (Arisitchthys nobilis) with alcalase using artificial neural network[J].Journal of Sichuan University (Engineering Science Edition),2006,38(1):80-85.
[44] HOU H,LU J H,FAN Y,et al.Enzymatic Hydrolysis of Alaska Pollock Proteins Based on Kinetics Model and Lysine Biosensor-Neural Network Model[J].Journal of Aquatic Food Product Technology,2017,26(3):267-278.
[45] ERTÜRK M D,SAÇAN M T,NOVIC M,et al.Quantitative structure-activity relationships (QSARs) using the novel marine Algal toxicity data of phenols[J].Journal of Molecular Graphics & Modelling,2012,38:90-100.
[46] PAPADOPOULOS V D,BELIGIANNIS G N,HELA D G.Combining experimental design and artificial neural networks for the determination of chlorinated compounds in fish using matrix solid-phase dispersion[J].Applied Soft Computing,2011,11:5 155-5 164.
[47] MOGHADDAM M G,KHAJEH M.Comparison of response surface methodology and artificial neural network in predicting the microwave-assisted extraction procedure to determine zinc in fish muscles[J].Food and Nutrition Sciences,2011,2(8):803-808.
[48] CHEN L P,LI Z J,YU F,et al.Hyperspectral Imaging and chemometrics for nondestructive quantification of total volatile basic nitrogen in pacific oysters (Crassostrea gigas)[J].Food Analytical Methods,2019,12(3):799-810.
[49] 徐文杰,刘欢,陈东清,等.基于近红外光谱技术的鲢鱼营养成分的快速分析[J].食品安全质量检测学报,2014,5(2):516-527.
XU W J,LIU H,CHEN D Q,et al.Rapid analysis on nutrient of silver carp based on near-infrared spectroscopy[J].Journal of Food Safety and Quality Inspection,2014,5(2):516-527.
[50] LIU X C,QIN N,LUO Y K.Application of a combination model based on an error-correcting technique to predict quality changes of vacuum-packed bighead carp (Aristichthys nobilis) fillets[J].LWT-Food Science and Technology,2016,74:514-520.
[51] MOHEBBI M,AKBARZADEH-T M R,SHAHIDI F,et al.Computer vision systems (CVS) for moisture content estimation in dehydrated shrimp[J].Computers and Electronics in Agriculture,2009,69(2):128-134.
[52] HOSSEINPOUR S,RAFIEE S,AGHBASHLO M,et al.Computer vision system (CVS) for in-line monitoring of visual texture kinetics during shrimp (Penaeus spp.) drying[J].Drying Technology,2015,33(2):238-254.
[53] 薛大为,杨春兰.基于生物阻抗技术的淡水鱼新鲜度检测方法研究[J].西南民族大学学报(自然科学版),2014,40(4):603-607.
XUE D W,YANG C L.Study on detection method of freshwater fish freshness based on bioimpedance technology[J].Journal of Southwest University for Nationalities (Natural Science Edition),2014,40(4):603-607.
[54] 刘欢,徐文杰,刘友明,等.鲫鱼新鲜度近红外定量预测模型的建立[J].现代食品科技,2015,31(7):173-182.
LIU H,XU W J,LIU Y M,et al.Establishment of quantitative model to predict the freshness of crucian carp (Carassius auratus) based on near-infrared spectroscopy[J].Modern Food Science and Technology,2015,31(7):173-182.
[55] DUAN C,CHEN C G,KHAN M N,et al.Non-destructive determination of the total bacteria in flounder fillet by portable near infrared spectrometer[J].Food Control,2014,42:18-22.
[56] 段翠. 近红外光谱法快速检测几种海洋鱼类的菌落总数[D].青岛:中国海洋大学,2014.
DUAN C.Rapid detection of the total number of colonies of several marine fishes by near infrared spectroscopy[D].Qingdao:Ocean University of China,2014.
[57] 段翠,陈春光,刘永志,等.基于手持式近红外光谱仪的三文鱼菌落总数检测技术[J].食品安全质量检测学报,2014,5(3):889-893.
DUAN C,CHEN C G,LIU Y Z,et al.Detection of total number of salmon colonies by handheld near infrared spectrometer[J].Journal of Food Safety & Quality,2014,5(3):889-893.
[58] BRION G,VISWANATHAN C,NEELAKANTAN T R,et al.Artificial neural network prediction of viruses in shellfish[J].Applied and Environmental Microbiology,2005,71(9):5 244-5 253.
[59] YANG S L,ZHANG Y,ZHANG H,et al.Comparative analysis of different models in fishery CPUE standardization[J].Transactions of the Chinese Society of Agricultural Engineering,2015,31(21):259-264.
[60] KIM E,LEE J H,SHIN B J,et al.An odor monitoring system based on differentiated pattern recognition implemented a semiconductor gas sensor array[J].Advanced Science Letlers,2013,19(10):2 901-2 904.
[61] SHI C,CUI J Y,LIU X C,et al.Application of artificial neural network to predict the change of inosine monophosphate for lightly salted silver carp (Hypophthalmichthys molitrix) during thermal treatment and storage[J].Journal of Food Processing and Preservation,2017,41(6):1-8.
[62] 席庆,章超桦,曾少葵.基于神经网络法优化即食皱纹盘鲍栅栏模式[J].现代食品科技,2013,29(6):1311-1315.
XI Q,ZHANG C H,ZENG S K.Optimization of hurdle pattern for preservation of ready-to-eat abalone(Haliotis discus Hannai ino) based on neural network[J].Modern Food Science and Technology,2013,29(6):1 311-1 315.
[1] 郑涛, 苏柯星, 丛桂芝, 陈明杰, 孙丙寅, 刘淑明. 树上干杏和梅杏果实品质分析与综合评价[J]. 食品与发酵工业, 2021, 47(9): 201-207.
[2] 朱琳, 郭全友. 底物和环境因子对鱼源腐败希瓦氏菌和假单胞菌生长动力学的影响[J]. 食品与发酵工业, 2021, 47(7): 58-63.
[3] 肖叶, 叶精勤, 阎俊, 施文正, 卢瑛. 生物加工技术对水产品主要过敏原的致敏性消减作用研究进展[J]. 食品与发酵工业, 2021, 47(6): 274-279.
[4] 吴力亚, 吴天祥, 汪玲. 茯苓提取物参与灰树花液态深层发酵及对其活性物质产量的影响[J]. 食品与发酵工业, 2021, 47(5): 57-62.
[5] 李先翠, 李保国, 姜元荣, 史海明, 王红玲. 光照处理对花生萌发过程中营养成分和活性成分的影响[J]. 食品与发酵工业, 2021, 47(4): 47-53.
[6] 庞雯辉, 赵希娟, 陈西, 张耀海, 王成秋, 赵其阳, 焦必宁. 超高效液相色谱-四极杆-飞行时间高分辨质谱法快速筛查柠檬果实中的生物活性成分[J]. 食品与发酵工业, 2021, 47(4): 222-230.
[7] 严静, 蔡易熹, 陈燕兰, 张慧莹, 杜冰. 铁皮石斛茎、叶、花的活性成分及综合利用研究进展[J]. 食品与发酵工业, 2021, 47(17): 299-306.
[8] 杜津, 何悦, 刘敏, 曹思源, 徐丹, 任丹. 柚子精油微胶囊的制备及其对鲜切苹果保鲜效果的研究[J]. 食品与发酵工业, 2021, 47(14): 160-167.
[9] 利通, 陈舒唱, 沈阿倩, 冯作山, 阿比旦木·卡地尔, 刘世忍, 黄文书. 基于多元统计分析方法建立油塔子品质评价体系[J]. 食品与发酵工业, 2021, 47(14): 244-250.
[10] 刘宏, 骆珅, 江正强, 杨绍青, 刘军, 闫巧娟. 贝莱斯芽孢杆菌固体发酵瓜尔豆粕的活性成分、溶栓及抗氧化活性[J]. 食品与发酵工业, 2021, 47(13): 126-132.
[11] 蒋永波, 汪开拓, 代领军, 田鸥, 邱玲岚, 雷长毅, 黎春红. 冷榨柠檬籽油复合脱苦工艺优化及其理化特性和脂肪酸组成分析[J]. 食品与发酵工业, 2021, 47(12): 166-175.
[12] 魏春雨, 朱道洋, 上官修蕾, 余晓斌. 不同酿酒酵母对黑果腺肋花楸酒成分的影响[J]. 食品与发酵工业, 2021, 47(12): 182-188.
[13] 付春艳, 吴殿辉, 谢广发, 陆健. 新型清爽型干黄酒的酿造工艺[J]. 食品与发酵工业, 2021, 47(11): 165-170.
[14] 孙晴, 徐文华, 周华坤. 青藏高原地区四种野生茶藨子浆果营养成分和生物活性成分分析[J]. 食品与发酵工业, 2021, 47(10): 229-234.
[15] 蓝蔚青, 赵欣宇, 刘嘉莉, 梅俊, 谢晶. 植物多酚的主要抑菌机制及在水产品保鲜中的应用研究进展[J]. 食品与发酵工业, 2021, 47(10): 259-264.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn