Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (16): 1-8    DOI: 10.13995/j.cnki.11-1802/ts.026748
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
基于细胞膜脂肪酸调控提高乳杆菌冻干存活率
钱志浩, 崔树茂*, 唐鑫, 毛丙永, 赵建新, 陈卫
(江南大学 食品学院,江苏 无锡,214122)
Improving the survival rate of lyophilized Lactobacillus based on the regulation of fatty acids in cell membrane
QIAN Zhihao, CUI Shumao*, TANG Xin, MAO Bingyong, ZHAO Jianxin, CHEN Wei
(School of Food Science and Technology, Jiangnan University, Wuxi 214122, China)
下载:  HTML  PDF (1801KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以形态、荚膜多糖产量、胞内相溶性溶质含量一致的不同乳杆菌为研究对象,通过气相质谱联用测定各菌体稳定期的细胞膜脂肪酸组成并统计冻干存活率,分析乳杆菌细胞膜脂肪酸组成特点与冻干存活率的关系。而后通过测定酸应激、冷应激及发酵过程添加吐温20、吐温80后菌体细胞膜脂肪酸组成及冻干存活率,探索基于细胞膜脂肪酸改善提高冻干存活率的高效调控手段。研究结果表明,培养至稳定期的乳杆菌的细胞膜脂肪酸不饱和率约为(54.01±0.05)%~(64.14±0.13)%、平均链长约为17.21~17.39。环境应激处理对细胞膜脂肪酸组成造成的变化较小,而添加外源脂肪酸对细胞膜脂肪酸组成造成的影响较大。通过在mMRS液体培养基添加2 mL/L的吐温80,短乳杆菌173-1-2的不饱和率从(64.14±0.13)%升至(80.31±0.04)%,冻干存活率也从(41.87±1.44)%升至(60.72±1.15)%;鼠李糖乳杆菌FJND的不饱和率从(54.01±0.05)%升至(74.72±0.10)%,冻干存活率从(45.22±1.54)%升至(59.63±1.55)%。该实验为调控乳杆菌细胞膜状态从而提高冻干存活率提供了指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
钱志浩
崔树茂
唐鑫
毛丙永
赵建新
陈卫
关键词:  乳杆菌  冻干存活率  细胞膜脂肪酸    
Abstract: To study the relationship between the membrane fatty acid composition of Lactobacillus and the survival rate after lyophilization, diverse Lactobacillus with the same morphology, low capsular polysaccharide content and intracellular compatible solutes were selected, the fatty acid composition of cell membrane through GC-MS and the survival rate of Lactobacillus after lyophilization were examined. Then after treating Lactobacillus through acid stress, cold stress and adding Tween 20 or Tween 80 in the fermentation process, the fatty acid composition of the cell membrane and the survival rate of Lactobacillus after freeze-drying were measured to explore how to effectively improve the survival rate of Lactobacillus by changing the fatty acid of cell membrane during lyophilization. The results showed that the unsaturated rate of fatty acid in cell membrane of Lactobacillus at the stationary phase was about (54.01±0.05)%-(64.14±0.13)%, and the average chain length was about 17.21-17.39. Environmental stress had little effect on the fatty acid composition of cell membrane, and the addition of exogenous fatty acid had greater effect on the fatty acid composition of cell membrane. By adding 2 mL/L Tween 80 in mMRS liquid medium, the unsaturated rate of Lactobacillus brevis 173-1-2 increased from(64.14±0.13)% to (80.31±0.04)%, and the survival rate also increased from (41.87±1.44)% to (60.72±1.15)%. The unsaturated rate of Lactobacillus rhamnosus FJND increased from (54.01±0.05)% to (74.72±0.10)%, and the survival rate increased from (45.22±1.54)% to (59.63±1.55)%. This study provides guidance for regulating the cell membrane status of Lactobacillus to improve the survival rate of lyophilized Lactobacillus products.
Key words:  Lactobacillus    lyophilization survival rate    cell membrane fatty acids
收稿日期:  2021-01-19      修回日期:  2021-02-19                发布日期:  2021-09-10      期的出版日期:  2021-08-25
基金资助: 国家食品科学与工程一流学科建设项目(JUFSTR20180102);国家青年科学基金项目(318010744)
作者简介:  硕士研究生(崔树茂副研究员为通讯作者,E-mail:cuishumao@jiangnan.edu.cn)
引用本文:    
钱志浩,崔树茂,唐鑫,等. 基于细胞膜脂肪酸调控提高乳杆菌冻干存活率[J]. 食品与发酵工业, 2021, 47(16): 1-8.
QIAN Zhihao,CUI Shumao,TANG Xin,et al. Improving the survival rate of lyophilized Lactobacillus based on the regulation of fatty acids in cell membrane[J]. Food and Fermentation Industries, 2021, 47(16): 1-8.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.026748  或          http://sf1970.cnif.cn/CN/Y2021/V47/I16/1
[1] DIXIT Y, WAGLE A, VAKIL B.Patents in the field of probiotics, prebiotics, synbiotics:A review[J].Journal of Food:Microbiology, Safety & Hygiene, 2016, 1(2):1-13.
[2] MENG X, ZHANG G, CAO H, et al.Gut dysbacteriosis and intestinal disease:Mechanism and treatment[J].Journal of Applied Microbiology, 2020, 129(4):787-805.
[3] KERRY R G, PATRA J K, GOUDA S, et al.Benefaction of probiotics for human health:A review[J].Journal of Food & Drug Analysis, 2018, 26(3):927-939.
[4] YANG C, YAN J, et al.Dose-response efficacy and mechanisms of orally administered CLA-producing Bifidobacterium breve CCFM683 on DSS-induced colitis in mice-ScienceDirect[J].Journal of Functional Foods, 2020, 75(1):1-17.
[5] CARVALHO A S, SILVA J, HO P, et al.Relevant factors for the preparation of freeze-dried lactic acid bacteria[J].International Dairy Journal, 2004, 14(10):835-847.
[6] 李明慧, 尚一娜, 霍麒文, 等.真空冷冻干燥对乳酸菌损伤机制的研究进展[J].食品科学, 2018, 39(19):273-279.
LI M H, SHANG Y N, HUO Q W, et al.Research progress on damage mechanism of lactic acid bacteria caused by vacuum freeze drying[J].Food Science, 2018, 39(19):273-279.
[7] JOFRÉ A, AYMERICH T, GARRIGA M.Impact of different cryoprotectants on the survival of freeze-dried Lactobacillus rhamnosus and Lactobacillus casei/paracasei during long-term storage[J].Beneficial Microbes, 2015, 6(3):381-386.
[8] SENZ M, VANL B, STAHL U, et al.Control of cell morphology of Lactobacillus acidophilus for enhanced cell stability during freeze-drying and storage[J].New Biotechnology, 2012, 29:208.
[9] LAEZZA A, CASILLO A, COSCONATI S, et al.Decoration of chondroitin polysaccharide with threonine:Synthesis, conformational study and ice-recrystallization inhibition activity[J].Biomacromolecules, 2017, 18(8):2 267-2 276.
[10] NAKAGAWA Y, SOTA M, KOUMOTO K.Cryoprotective ability of betaine-type metabolite analogs during freezing denaturation of enzymes[J].Biotechnol Lett, 2015, 37(8):1 607-1 613.
[11] MAULUCCI G, COHEN O, DANIEL B, et al.Fatty acid-related modulations of membrane fluidity in cells:Detection and implications[J].Free Radical Research Communications, 2016, 50(1):40-50.
[12] DOMINIK R, KAFKA T A, LENZ C A, et al.Interrelation between Tween and the membrane properties and high pressure tolerance of Lactobacillus plantarum[J].BMC Microbiology, 2018, 18(1):72.
[13] 谭莎莎, 马方励, 崔树茂, 等.罗伊氏乳杆菌冻干保护剂的优选及高密度冻干工艺优化[J].食品与发酵工业, 2020, 46(4):1-6.
TAN S S, MA F L, CUI S M, et al.Optimum selection of protectant for lyophilization of Lactobacillus reuteri and optimization of high density lyophilization process[J].Food and Fermentation Industries, 2020, 46(4):1-6.
[14] 吴晟, 崔树茂, 毛丙永, 等.干酪乳杆菌菌体表面物质对冻干存活率的影响[J].食品与发酵工业, 2020, 46(17):73-79.
WU S, CUI S M, MAO B Y, et al.Effects of surface substances of Lactobacillus casei on survival rate of freeze-drying[J].Food and Fermentation Industries, 2020, 46(17):73-79.
[15] 吴重德. 干酪乳杆菌抵御酸胁迫的生理机制解析[D].无锡:江南大学, 2012.
WU Z D.Physiological mechanism of Lactobacillus casei resisting acid stress[D].Wuxi:Jiangnan University, 2012.
[16] LOUESDON S, CHARLOT-ROUGÉ, JUILLARD V, et al.Osmotic stress affects the stability of freeze-dried Lactobacillus buchneri R1102 as a result of intracellular betaine accumulation and membrane characteristics[J].Journal of Applied Microbiology, 2014, 117(1):196-207.
[17] 田丰伟, 尹义敏, 翟齐啸, 等.细胞膜ATPase活性和膜脂肪酸组成对植物乳杆菌耐酸性的影响[J].中国食品学报, 2016, 16(12):17-22.
TIAN F W, YIN Y M, ZHAI Q X, et al.Effects of membrane ATPase activity and membrane fatty acid composition on acid tolerance of Lactobacillus plantarum[J]. Journal of Chinese Institute of Food Science and Technology, 2016, 16(12):17-22.
[18] 张筠, 孟祥晨, 石丹, 等.冷适应对德氏乳杆菌保加利亚亚种FL6冻干存活率及其细胞膜脂肪酸的影响[J].食品科技, 2015, 40(5):20-25.
ZHANG J, MENG X C, SHI D, et al.Effects of cold adaptation on lyophilized survival rate and membrane fatty acids of Lactobacillus bulgaricus FL6[J].Food Science and Technology, 2015, 40(5):20-25.
[19] 马佳歌, 于微, 姜瞻梅, 等.营养胁迫植物乳杆菌KLDS 1.0328的生理特性及其冷冻干燥菌粉贮存稳定性的分析[J/OL].食品科学, 2021.http://kns.cnki.net/kcms/detail/11.2206.TS.20201016.1806.002.html.
MA J G, YU W, JIANG Z M, et al.Physiological characteristics of Lactobacillus plantata KLDS 1.0328 under nutrient stress and analysis of storage stability of freeze-dried bacterial powder[J/OL].Food Science, 2021.http://kns.cnki.net/kcms/detail/11.2206.TS.20201016.1806.002.html.
[20] LOUESDON S, CHARLOT-ROUGÉ, S, JUILLARD V, et al.Osmotic stress affects the stability of freeze-dried Lactobacillus buchneri R1102 as a result of intracellular betaine accumulation and membrane characteristics[J].Journal of Applied Microbiology, 2014, 117(1):196-207.
[21] 王海娟. 保加利亚乳杆菌细胞内甜菜碱的转运及其调控蛋白初探[D].哈尔滨:哈尔滨工业大学, 2015.
WANG H J.Betaine transport in Lactobacillus bulgaricus cells and its regulatory proteins[D].Harbin:Harbin Institute of Technology, 2015.
[22] DE MENDOZA D, PILON M.Control of membrane lipid homeostasis by lipid-bilayer associated sensors:A mechanism conserved from bacteria to humans[J].Progress in Lipid Research, 2019, 76:100 996.
[23] 李博, MATTHIAS D, 李艳, 等.内陆土壤冷适应细菌的筛选分类与细胞膜脂肪酸的适冷机制[J].微生物学通报, 2010, 37(8):1 110-1 116.
LI B, MATTHIAS D, LI Y, et al.Screening and classification of cold-adapted bacteria in inland soil and the cold-adapted mechanism of fatty acids in cell membrane[J].Microbiology China, 2010, 37(8):1 110-1 116.
[24] QUINN P J.The fluidity of cell membranes and its regulation[J].Progress in Biophysics and Molecular Biology, 1981, 38:1-104.
[25] VELLY H, BOUIX M, PASSOT S, et al.Cyclopropanation of unsaturated fatty acids and membrane rigidification improve the freeze-drying resistance of Lactococcus lactis subsp.lactis TOMSC161[J].Applied Microbiology and Biotechnology, 2015, 99(2):907-918.
[26] MYKYTCZUK N C S, TREVORS J T, LEDUC L G, et al.Fluorescence polarization in studies of bacterial cytoplasmic membrane fluidity under environmental stress[J].Progress in Biophysics & Molecular Biology, 2007, 95(1-3):60-82.
[27] SAITO H E, HARP J R,FOZO E M, et al.Enterococcus faecalis responds to individual exogenous fatty acids independently of their degree of saturation or chain length[J].Applied & Environmental Microbiology, 2018,84(1):e01 633-17.
[28] 印伯星, 车舒雅, 张臣臣, 等.酸胁迫和冷胁迫对鼠李糖乳杆菌的交叉保护作用[J].食品研究与开发, 2020, 41(12):37-41.
YIN B X, CHE S Y, ZHANG C C, et al.Cross protection of Lactobacillus rhamnosus under acid and cold stress[J].Food Research and Development, 2020, 41(12):37-41.
[29] MONTANARI C, KAMDEM S L S, SERRAZANETTI D I, et al.Synthesis of cyclopropane fatty acids in Lactobacillus helveticus and Lactobacillus sanfranciscensis and their cellular fatty acids changes following short term acid and cold stresses[J].Food Microbiology, 2010, 27(4):493-502.
[1] 马申嫣, 王晶, 赵岩, 曹江, 翟齐啸, 张灏, 赵建新, 田丰伟, 陈卫. 以巧克力为载体的益生菌膳食补充剂的开发[J]. 食品与发酵工业, 2021, 47(9): 143-148.
[2] 张恕铭, 曾林, 孙向阳, 汪杰, 孙擎, 张庆, 谭霄. 屎肠球菌与植物乳杆菌共培养产γ-氨基丁酸条件优化及关键酶活性研究[J]. 食品与发酵工业, 2021, 47(9): 154-159.
[3] 孙媛媛, 崔树茂, 唐鑫, 毛丙永, 赵建新, 陈卫. 发酵乳杆菌的生长限制性因素分析及高密度培养工艺优化[J]. 食品与发酵工业, 2021, 47(6): 1-10.
[4] 彭明芳, 李培骏, 单杨, 陈玉秋, 杨岱峻, 雷丽嫦, 黄芝辉, 余孔新. 比较基因组揭示广西酸菜乳杆菌碳水化合物活性酶谱[J]. 食品与发酵工业, 2021, 47(4): 68-73.
[5] 赵沁雨, 兰天, 袁取予, 高晨旭, 鲍诗晗, 王家琪, 孙翔宇, 马婷婷. 植物乳杆菌发酵对果汁品质的影响研究概述[J]. 食品与发酵工业, 2021, 47(16): 300-307.
[6] 徐晚晴, 张秋香, 郑彦懿, 赵建新, 马方励. 治疗牙周炎的乳杆菌筛选及口腔益生特性评价[J]. 食品与发酵工业, 2021, 47(15): 70-76.
[7] 余意, 王超越, 吴正钧, 张佳, 吴天赐. 四株乳杆菌作为口腔益生菌的特性研究[J]. 食品与发酵工业, 2021, 47(15): 77-83.
[8] 丹彤, 田佳乐, 乔少婷. 具有良好风味德氏乳杆菌保加利亚亚种的筛选及其产香性能分析[J]. 食品与发酵工业, 2021, 47(14): 229-234.
[9] 王东旭, 尹成男, 叶华, 郭元新. 热灭活鼠李糖乳杆菌HN001对DSS诱导的小鼠结肠炎保护作用[J]. 食品与发酵工业, 2021, 47(13): 30-35.
[10] 孙盛, 陈作国, 俞赟霞, 曲冬梅, 余腾斐, 李言郡, 陈苏. 产胞外多糖植物乳杆菌WHH589的免疫活性及其在发酵乳中的应用[J]. 食品与发酵工业, 2021, 47(13): 43-50.
[11] 马申嫣, 王晶, 朱家民, 曹江, 翟齐啸, 张灏, 赵建新, 田丰伟, 陈卫. 植物蛋白-益生菌复合制剂对小鼠铅毒性的缓解作用[J]. 食品与发酵工业, 2021, 47(13): 51-58.
[12] 肖健, 蔡国林, 吴殿辉, 李晓敏, 陆健. 酸啤酒酿造用乳酸菌的筛选及应用[J]. 食品与发酵工业, 2021, 47(13): 107-111.
[13] 石阳阳, 江远智, 李瑞, 严利文, 赵建新, 陈卫, 张灏, 杭锋. 协同发酵生产植物乳杆菌发酵乳及其特性研究[J]. 食品与发酵工业, 2021, 47(11): 8-13.
[14] 陈大卫, 梁娇娇, 程月, 瞿恒贤, 陈春萌, 任晨瑜, 张臣臣, 关成冉, 马文龙, 陈霞, 李启明, 顾瑞霞. 鼠李糖乳杆菌hsryfm 1301发酵乳在非酒精性脂肪肝细胞模型中对人肝细胞L-02的益生作用[J]. 食品与发酵工业, 2021, 47(11): 61-67.
[15] 乔荣更, 贾宇, 张红星, 谢远红, 金君华, 刘慧, 蒋林树, 郝彦玲. 可抑制口腔致病菌的乳酸菌筛选及其抑菌特性研究[J]. 食品与发酵工业, 2021, 47(11): 75-81.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn