Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (17): 34-40    DOI: 10.13995/j.cnki.11-1802/ts.026935
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
代谢组学分析甜菜碱对大肠杆菌合成苏氨酸的影响
李杰, 田俊宇, 季圆清, 元跃, 徐庆阳, 陈宁, 范晓光*
(天津科技大学 生物工程学院,天津,300457)
Effect of betaine on synthesis of threonine in Escherichia coli by metabonomic analysis
LI Jie, TIAN Junyu, JI Yuanqing, YUAN Yue, XU Qingyang, CHEN Ning, FAN Xiaoguang*
(College of Biotechnology,Tianjin University of Science & Technology,Tianjin 300457,China)
下载:  HTML  PDF (5062KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 甜菜碱作为一种新型的发酵助剂,能够有效提升工业生产过程中菌株的发酵性能。以苏氨酸生产菌Escherichia coli THRD 为研究对象,系统考察了甜菜碱对苏氨酸发酵以及菌体胞内代谢的影响。发酵过程中添加甜菜碱,苏氨酸产量从50.74 g/L提高到54.59 g/L,糖酸转化率从37.45%提高到40.69%。使用超高效液相色谱-飞行时间质谱联用技术分析甜菜碱作用下菌体胞内代谢物含量的变化,发现28个与苏氨酸合成代谢相关的显著差异代谢物。代谢通路分析表明,甜菜碱的加入能够通过改变糖酵解和磷酸戊糖途径的碳流分配,动态调节磷酸烯醇式丙酮酸羧化酶催化的CO2固定反应和三羧酸循环,减少3-磷酸甘油醛、天冬氨酸和苏氨酸的支路代谢,为苏氨酸的合成提供充足的还原力和前体物。研究从代谢层面揭示了甜菜碱对大肠杆菌的作用效果,为甜菜碱在其他工业发酵产品中的应用提供了理论参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李杰
田俊宇
季圆清
元跃
徐庆阳
陈宁
范晓光
关键词:  大肠杆菌  甜菜碱  苏氨酸  代谢组学    
Abstract: Betaine can effectively improve the fermentation performance of strains in industrial production. The effect of betaine on threonine fermentation and intracellular metabolism of Escherichia coli THRD were investigated. The threonine titer increased from 50.74 g/L to 54.59 g/L, while the yield increased from 37.45% to 40.69% when betaine was fed. In such case, 28 significantly different metabolites related threonine anabolism were discovered. Metabolic flux analysis showed that carbon flow distribution of glycolysis and pentose phosphate pathway were changed, CO2 fixation reaction catalyzed by phosphoenol pyruvate carboxylase and tricarboxylic acid cycle were regulated, and bypass metabolism of glyceraldehyde-3-phosphate, aspartic acid and threonine were reduced, thus providing sufficient reducing power and precursor for threonine synthesis. The results revealed the effect of betaine on E. coli on the metabolic level and provided a theoretical reference for the application of betaine in other industrial fermentation products.
Key words:  Escherichia coli    betaine    threonine    metabolomics
收稿日期:  2021-01-31      修回日期:  2021-04-16                发布日期:  2021-09-27      期的出版日期:  2021-09-15
基金资助: 国家自然科学基金项目(31700037);天津市自然科学基金项目(18JCQNJC79200)
作者简介:  硕士研究生(范晓光副教授为通讯作者,E-mail: xiaoguangfan@tust.edu.cn)
引用本文:    
李杰,田俊宇,季圆清,等. 代谢组学分析甜菜碱对大肠杆菌合成苏氨酸的影响[J]. 食品与发酵工业, 2021, 47(17): 34-40.
LI Jie,TIAN Junyu,JI Yuanqing,et al. Effect of betaine on synthesis of threonine in Escherichia coli by metabonomic analysis[J]. Food and Fermentation Industries, 2021, 47(17): 34-40.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.026935  或          http://sf1970.cnif.cn/CN/Y2021/V47/I17/34
[1] BECKER J,WITTMANN C.Systems and synthetic metabolic engineering for amino acid production-the heartbeat of industrial strain development[J].Current Opinion in Biotechnology,2012,23(5):718-726.
[2] SONG K H,LEE H H,HYUN H H.Characterization of salt-tolerant mutant for enhancement of L-threonine production in Escherichia coli[J].Applied Microbiology and Biotechnology,2000,54(5):647-651.
[3] DONG X Y,QUINN P J,WANG X Y.Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for the production of L-threonine[J].Biotechnology Advances,2011,29(1):11-23.
[4] ALMAAS E,KOVÁCS B,VICSEK T,et al.Global organization of metabolic fluxes in the bacterium Escherichia coli[J].Nature,2004,427(6 977):839-843.
[5] LEE K H,PARK J H,KIM T Y,et al.Systems metabolic engineering of Escherichia coli for L-threonine production[J].Molecular Systems Biology,2007,3(1):149.
[6] LEE J H,SUNG B H,KIM M S,et al.Metabolic engineering of a reduced-genome strain of Escherichia coli for L-threonine production[J].Microbial Cell Factories,2009,8(1):1-12.
[7] CHEN N,HUANG J,FENG Z B,et al.Optimization of fermentation conditions for the biosynthesis of L-threonine by Escherichia coli[J].Applied Biochemistry and Biotechnology,2009,158(3):595-604.
[8] SU Y W,GUO Q Q,WANG S,et al.Effects of betaine supplementation on L-threonine fed-batch fermentation by Escherichia coli[J].Bioprocess and Biosystems Engineering,2018,41(10):1 509-1 518.
[9] FIGUEROA-SOTO C G,VALENZUELA-SOTO E M.Glycine betaine rather than acting only as an osmolyte also plays a role as regulator in cellular metabolism[J].Biochimie,2018,147:89-97.
[10] XIA W,PENG W F,CHEN W,et al.Interactive performances of betaine on the metabolic processes of Pseudomonas denitrificans[J].Journal of Industrial Microbiology and Biotechnology,2015,42(2):273-278.
[11] WARREN M J,RAUX E,SCHUBERT H L,et al.The biosynthesis of adenosylcobalamin (vitamin B12)[J].Natural Product Reports,2002,19(4):390-412.
[12] YING H X,HE X,LI Y,et al.Optimization of culture conditions for enhanced lysine production using engineered Escherichia coli[J].Applied Biochemistry and Biotechnology,2014,172(8):3 835-3 843.
[13] XU K,XU P.Betaine and beet molasses enhance L-lactic acid production by Bacillus coagulans[J].PLoS One,2014,9(6).DOI:10.1371/journal.pone.0100731.
[14] 刘旭峰, 王宁,郝亚男,等.CRISPRi干扰中心代谢基因转录对苏氨酸合成的影响[J].食品与发酵工业,2019,45(8):1-7.
LIU X F,WANG N,HAO Y N,et al.Threonine synthesis under interfered transcriptions of genes involved in central metabolic pathway by CRISPRi[J].Food and Fermentation Industries,2019,45(8):1-7.
[15] MI Z H,KWOK L Y,XUE J G,et al.Fermentation dynamics of Lactobacillus helveticus H9 revealed by ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry[J].International Journal of Food Science & Technology,2018,53(6):1 442-1 451.
[16] 苏跃稳. L-苏氨酸基因工程菌的改造及发酵过程的优化[D].长春:吉林大学,2017.
SU Y W.Modification of L-threonine-producing strain and optimization of fermentation process[D].Changchun:Jilin University,2017.
[17] LI Y J,ZHANG D Z,CAI N Y,et al.Betaine supplementation improved l-threonine fermentation of Escherichia coli THRD by upregulating zwf (glucose-6-phosphate dehydrogenase) expression[J].Electronic Journal of Biotechnology,2019,39:67-73.
[18] 郭群群. 三甲基甘氨酸对大肠杆菌发酵生产L-苏氨酸的影响[D].长春:吉林大学,2018.
GUO Q Q.Effects of trimethylglycine on L-threonine production in Escherichia coli[D].Changchun:Jilin University,2018.
[1] 解天慧, 石慧. 大肠杆菌O157∶H7噬菌体EC-p9的内溶酶和穿孔素的特性预测及克隆表达[J]. 食品与发酵工业, 2021, 47(9): 107-113.
[2] 唐富豪, 滕建文, 韦保耀, 黄丽, 夏宁, 覃超. 基于非靶向代谢组学评价传统发酵对客家酸芥菜酚类化合物组成的影响[J]. 食品与发酵工业, 2021, 47(8): 128-133.
[3] 李思源, 李培瑜, 刘弈彤, 刘海杰, 张泽俊, 沙坤. 代谢组学在食品科学中的应用进展[J]. 食品与发酵工业, 2021, 47(5): 252-258.
[4] 李晨晨, 李梦丽, 江波, 张涛. 2'-岩藻糖基乳糖的生物合成菌株构建及发酵条件研究[J]. 食品与发酵工业, 2021, 47(3): 10-17.
[5] 郭峰, 董明辉, 高梦园, 舒方, 孙冬冬, 汪维云. 柠檬香蜂草精油的气相色谱-质谱联用分析及抑菌活性研究[J]. 食品与发酵工业, 2021, 47(2): 109-113.
[6] 李旋, 王加初, 刘益宁, 蒋帅, 吴鹤云, 谢希贤. 代谢工程改造大肠杆菌生产L-丝氨酸[J]. 食品与发酵工业, 2021, 47(17): 1-7.
[7] 冯静茹, 于立雪, 田康明, 牛丹丹, 王正祥. 大肠杆菌D-乳酸脱氢酶(FAD)的分子克隆与酶学性质[J]. 食品与发酵工业, 2021, 47(17): 22-26.
[8] 诸亚锋, 徐铮. 来源于Dictyoglomus sp.NZ13-RE01的纤维二糖差向异构酶酶学性质和乳果糖制备研究[J]. 食品与发酵工业, 2021, 47(13): 9-15.
[9] 李梦莹, 吕雪芹, 刘延峰, 李江华, 堵国成, 吴剑荣, 刘龙. 代谢工程改造大肠杆菌合成L-组氨酸[J]. 食品与发酵工业, 2021, 47(12): 1-9.
[10] 刘益宁, 秦臻, 李旋, 蒋帅, 吴鹤云, 谢希贤. 胞苷合成途径改造对大肠杆菌嘧啶核苷发酵的影响[J]. 食品与发酵工业, 2021, 47(12): 10-16.
[11] 杨青青, 王智荣, 彭林, 陈巧莉, 闻乐嫣, 郭泽航, 阚建全. 基于代谢组学分析两种产地青花椒中非挥发性成分的差异[J]. 食品与发酵工业, 2021, 47(12): 216-223.
[12] 易昌毓, 罗自生, 潘响亮, 林星宇. 基于数字化环介导等温扩增技术的牛乳中大肠杆菌快速精准定量分析[J]. 食品与发酵工业, 2021, 47(11): 241-246.
[13] 曾伟主, 单小玉, 房峻, 周景文. 微液滴适应性进化强化大肠杆菌耐受高浓度L-山梨糖[J]. 食品与发酵工业, 2021, 47(1): 1-7.
[14] 郭宵, 安亚静, 柴成程, 路福平, 刘夫锋. 大肠杆菌分泌表达裂解性多糖单加氧酶发酵条件的优化[J]. 食品与发酵工业, 2020, 46(5): 31-37.
[15] 顾鹏帅, 潘梅, 丁亮亮, 唐蕾. 共表达谷氨酰-tRNA还原酶增强染料脱色过氧化物酶在大肠杆菌中的表达活性[J]. 食品与发酵工业, 2020, 46(4): 45-50.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn