Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (20): 52-59    DOI: 10.13995/j.cnki.11-1802/ts.026986
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
山药多糖对丙烯酰胺诱导的巨噬细胞氧化损伤的保护作用
王静, 韩莹, 连珺怡, 孙玉姣, 刘欢, 陈雪峰*
(陕西科技大学 食品与生物工程学院,陕西 西安,710021)
Protective effect of Rhizoma dioscoreae polysaccharides on oxidative damage induced by acrylamide in macrophages
WANG Jing, HAN Ying, LIAN Junyi, SUN Yujiao, LIU Huan, CHEN Xuefeng*
(School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi′an 710021, China)
下载:  HTML  PDF (4108KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 该文研究山药多糖对丙烯酰胺(acrylamide,AM)诱导的巨噬细胞氧化损伤的保护作用。以AM诱导小鼠巨噬细胞(RAW264.7)损伤,山药多糖进行保护,检测山药多糖对细胞增殖、吞噬活力以及氧化应激的影响;并构建生物大分子(蛋白、脂类、DNA)氧化损伤模型,评价山药多糖对生物大分子的保护作用。结果表明,与正常对照组相比,不同质量浓度的山药多糖对细胞增殖影响无显著性差异。与诱导组(AM)相比,不同浓度的山药多糖能显著促进细胞生长和提高细胞吞噬活力。山药多糖预处理能有效抑制细胞活性氧产生,减少丙二醛累积,提高细胞超氧化物歧化酶活性。此外,山药多糖对生物大分子也具有良好的保护作用。山药多糖可以通过提高细胞抗氧化能力,抑制细胞的氧化应激,抑制生物大分子氧化损伤,从而有效保护丙烯酰胺诱导的巨噬细胞氧化损伤。该研究为控制丙烯酰胺毒性及山药多糖的开发利用提供理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王静
韩莹
连珺怡
孙玉姣
刘欢
陈雪峰
关键词:  山药多糖  丙烯酰胺  巨噬细胞  氧化应激  免疫毒性    
Abstract: The aim of this study was to investigate the protective effect of Rhizoma dioscoreae polysaccharides on acrylamide (AM)-induced oxidative damage in mouse macrophages. AM-induced macrophage (RAW264.7) injury was first established, and Rhizoma dioscoreae polysaccharides were used to protect it. The effects of Rhizoma dioscoreae polysaccharides on cell proliferation, phagocytic activity and oxidative stress were detected. Additionally, the oxidative models were applied to evaluate the protective effect of yam polysaccharides on biological macromolecules (protein, lipid, DNA). The results showed that different concentrations of polysaccharides had no significant effect on cell proliferation, compared with the normal control group. Compared with the induction (AM) group, Rhizoma dioscoreae polysaccharides could significantly promote cell growth and improve phagocytic activity. Polysaccharide pretreatment could effectively inhibit the production of ROS, reduce the accumulation of MDA and enhance the activity of SOD. In addition, Rhizoma dioscoreae polysaccharides also exerted a good protective effect on biological macromolecules. Rhizoma dioscoreae polysaccharides could effectively protect macrophages from AM-induced oxidative damage by improving cell antioxidant capacity, inhibiting cell oxidative stress and macro-molecule oxidation. This study provides a theoretical basis for controlling the toxicity of acrylamide and for the potential development and utilization of Rhizoma dioscoreae polysaccharides.
Key words:  Rhizoma dioscoreae polysaccharides    acrylamide    RAW264.7    oxidative stress    immunotoxicity
收稿日期:  2021-02-03      修回日期:  2021-05-11           出版日期:  2021-10-25      发布日期:  2021-11-18      期的出版日期:  2021-10-25
基金资助: 国家自然科学基金-青年项目(21707086);陕西省科技厅自然科学基础研究项目(2019JQ-453);陕西省未央区科技项目(202044;201937);陕西省人力资源和社会保障厅留学人员科技活动择优资助项目(2019028);宁夏中宁枸杞产业专项基金项目(ZNGQCX-A-2019004;ZNGQCX-B-2019007)
作者简介:  博士,讲师(陈雪峰教授为通讯作者,E-mail:chenxf@sust.edu.cn)
引用本文:    
王静,韩莹,连珺怡,等. 山药多糖对丙烯酰胺诱导的巨噬细胞氧化损伤的保护作用[J]. 食品与发酵工业, 2021, 47(20): 52-59.
WANG Jing,HAN Ying,LIAN Junyi,et al. Protective effect of Rhizoma dioscoreae polysaccharides on oxidative damage induced by acrylamide in macrophages[J]. Food and Fermentation Industries, 2021, 47(20): 52-59.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.026986  或          http://sf1970.cnif.cn/CN/Y2021/V47/I20/52
[1] PUNDIR C S, YADAV N, CHHILLAR A K.Occurrence, synthesis, toxicity and detection methods for acrylamide determination in processed foods with special reference to biosensors:A review[J].Trends in Food Science & Technology, 2019, 85:211-225.
[2] 解瑞丽, 周启星.丙烯酰胺的环境暴露、生态行为与毒理效应研究进展[J].生态学杂志, 2013, 32(5):1 347-1 354.
XIE R L, ZHOU Q X.Environmental exposure, ecological behavior, and toxicological effect of acrylamide:A review[J].Chinese Journal of Ecology, 2013, 32(5):1 347-1 354.
[3] MATOSO V, BARGI-SOUZA P, IVANSKI F, et al.Acrylamide:A review about its toxic effects in the light of developmental origin of health and disease (DOHaD) concept[J].Food Chemistry, 2019, 283:422-430.
[4] HUANG M M, JIAO J J, WANG J, et al.Exposure to acrylamide induces cardiac developmental toxicity in zebrafish during cardiogenesis[J].Environmental Pollution, 2018, 234:656-666.
[5] 方瑾. 丙烯酰胺及苦瓜提取物对小鼠的免疫毒性研究[D].北京:中国疾病预防控制中心, 2014.
FANG J.Immunotoxicological evaluation of acrylamide and Momordica charantia extract[D].Beijing:Chinese Doctoral Dissertations Full-text Database, 2014.
[6] ZAMANI E, SHAKI F, ABEDIANKENARI S, et al.Acrylamide induces immunotoxicity through reactive oxygen species production and caspase-dependent apoptosis in mice splenocytes via the mitochondria-dependent signaling pathways[J].Biomedicine & Pharmacotherapy, 2017, 94:523-530.
[7] KOMOIKE Y, NOMURA-KOMOIKE K, MATSUOKA M.Intake of acrylamide at the dietary relevant concentration causes splenic toxicity in adult zebrafish[J].Environmental Research, 2020, 189:109977.
[8] GUO J, YU D D, LYU N, et al.Relationships between acrylamide and glycidamide hemoglobin adduct levels and allergy-related outcomes in general US population, NHANES 2005—2006[J].Environmental Pollution, 2017, 225:506-513.
[9] 吴鑫平, 李佳, 郝艳艳, 等.植物多糖对巨噬细胞的调控及机制研究进展[J].细胞与分子免疫学杂志, 2019, 35(5):473-478.
WU X P, LI J, HAO Y Y, et al.Research progress in the regulation and mechanism of plant polysaccharides on macrophages[J].Chinese Journal of Cellular and Molecular Immunology, 2019, 35(5):473-478.
[10] YANG W F, WANG Y, LI X P, et al.Purification and structural characterization of Chinese yam polysaccharide and its activities[J].Carbohydrate Polymers, 2015, 117:1 021-1 027.
[11] LI Q, LI W Z, GAO Q Y, et al.Hypoglycemic effect of Chinese yam (Dioscorea opposita rhizoma) polysaccharide in different structure and molecular weight[J].Journal of Food Science, 2017, 82(10):2 487-2 494.
[12] CHENG Z Y, HU M, TAO J, et al.The protective effects of Chinese yam polysaccharide against obesity-induced insulin resistance[J].Journal of Functional Foods, 2019, 55:238-247.
[13] YU L, ZHANG J, JIAO J, et al.Effect of nano yam polysaccharide on the blood glucose and blood lipid in rats[J].Pakistan Journal of Pharmaceutical Sciences, 2020, 33(1):481-487.
[14] XUE H Y, LI J R, LIU Y G, et al.Optimization of the ultrafiltration-assisted extraction of Chinese yam polysaccharide using response surface methodology and its biological activity[J].International Journal of Biological Macromolecules, 2019, 121:1 186-1 193.
[15] JU Y, XUE Y, HUANG J L, et al.Antioxidant Chinese yam polysaccharides and its pro-proliferative effect on endometrial epithelial cells[J].International Journal of Biological Macromolecules, 2014, 66:81-85.
[16] LI M, CHEN L X, CHEN S R, et al.Non-starch polysaccharide from Chinese yam activated RAW 264.7 macrophages through the Toll-like receptor 4 (TLR4)-NF-κB signaling pathway[J].Journal of Functional Foods, 2017, 37:491-500.
[17] WANG J Y, YUAN L, CHENG B, et al.Antioxidant capacity and antitumor activity of Fructus Kochiae extracts[J].Quality Assurance and Safety of Crops & Foods, 2014, 6(4):383-393.
[18] 林颖韬, 陈伶莉, 胡雪峰.免疫细胞的种类、功能及相关疾病概述[J].生物学教学, 2020, 45(4):77-80.
LIN Y T, CHEN L L, HU X F.The types, functions and related diseases of immune cells:A review [J].Biology Teaching, 2020, 45(4):77-80.
[19] NAN B, YANG C Y, LI L, et al.Allicin alleviated acrylamide-induced NLRP3 inflammasome activation via oxidative stress and endoplasmic reticulum stress in Kupffer cells and SD rats liver[J].Food and Chemical Toxicology, 2021, 148:111937.
[20] BARTOSZ G.Reactive oxygen species:Destroyers or messengers?[J].Biochemical Pharmacology, 2009, 77(8):1 303-1 315.
[21] 柯跃斌, 郑荣梁.自由基毒理学[M].北京:人民卫生出版社, 2012:16-20.
KE Y B, ZHENG R L.Free Radical Toxicology[M].Beijing:People′s Medical Publishing House, 2012:16-20.
[22] 张路路, 石婷, 朱梦婷, 等.黑灵芝多糖对丙烯酰胺诱导小肠上皮细胞氧化损伤的保护作用[J].食品科学, 2017, 38(3):170-175.
ZHANG L L, SHI T, ZHU M T, et al.Protective effect of Ganoderma atrum polysaccharides on oxidative damage induced by acrylamide in IEC-6 cells[J].Food Science, 2017, 38(3):170-175.
[23] 王莉, 叶维佳, 吴红静, 等.黑果枸杞多糖对大鼠肝损伤的保护研究[J].食品工业科技, 2020, 41(14):287-290;296.
WANG L, YE W J, WU H J, et al.Protective effect of Lycium barbarum polysaccharide on hepatic injury by acrylamide in rats[J].Science and Technology of Food Industry, 2020, 41(14):287-290;296.
[24] 江国勇, 雷艾彤, 杨莹, 等.黑灵芝多糖对丙烯酰胺致大鼠肝脏氧化损伤的保护作用[J].食品科学, 2020, 41(1):121-126.
JIANG G Y, LEI A T, YANG Y, et al.Protective effect of Ganoderma atrum polysaccharides against acrylamide-induced liver injury in rats[J].Food Science, 2020, 41(1):121-126.
[1] 刘婷, 周欣, 赵超, 龚小见, 陈华国. 植物多糖对肾损伤干预效果及作用机制研究进展[J]. 食品与发酵工业, 2021, 47(7): 269-277.
[2] 王路, 张蕾, 郑皎碧, 王琼熠, 范辉. 发酵制品调控糖脂代谢性疾病作用机制的研究进展[J]. 食品与发酵工业, 2021, 47(7): 292-300.
[3] 党慧杰, 郑远荣, 刘振民. 超高压处理对乳清分离蛋白结构及致敏蛋白含量的影响[J]. 食品与发酵工业, 2021, 47(6): 56-61.
[4] 刘亚辉, 刘思彤, 王萱, 杨蕊, 金明. 金雀异黄酮对叔丁基过氧化氢诱导的衰老H9c2细胞的保护作用[J]. 食品与发酵工业, 2021, 47(18): 113-118.
[5] 王晶, 乔洁, 裴新云, 常世民, 刘学娟, 闫训友. 阿魏侧耳胞外多糖分离纯化及其免疫活性研究[J]. 食品与发酵工业, 2021, 47(18): 127-134.
[6] 吉正梅, 张晓春, 彭钰迪, 王树林, 布丽君, 解华东. 鸭胚源抗氧化肽TD12对HepG2细胞氧化应激损伤的保护作用[J]. 食品与发酵工业, 2021, 47(18): 141-148.
[7] 李海枝, 王曙宾, 郭珊珊, 于有强, 刘义凤, 潘聪, 吴逸民, 周志桥, 夏凯, 李雅丽. 发酵火麻仁蛋白粉对HepG2细胞氧化应激损伤的保护作用[J]. 食品与发酵工业, 2021, 47(15): 84-89.
[8] 张天, 王园园, 张钊, 葛乃嘉, 尹学哲, 郑喜, 全吉淑. 草苁蓉多糖对脂多糖诱导的小鼠J774A.1巨噬细胞炎症反应的抑制作用[J]. 食品与发酵工业, 2021, 47(12): 117-122.
[9] 张强, 王梦锦, 马玉涵, 孙玉军, 王松华. 羊肚菌蛋白水解物及其硒化衍生物的细胞保护作用和安全性研究[J]. 食品与发酵工业, 2021, 47(10): 116-123.
[10] 李陈晨, 赖凤羲, 夏永军, 艾连中, 张汇. 正红菇多糖提取物的化学组成及细胞免疫活性[J]. 食品与发酵工业, 2020, 46(9): 115-121.
[11] 丁亮亮, 刘进生, 顾鹏帅, 唐蕾. 大肠杆菌过氧化物酶EfeB在细胞氧化应激中的作用[J]. 食品与发酵工业, 2020, 46(17): 33-39.
[12] 刘振民, 庞佳坤, 郑远荣. 乳清蛋白源抗氧化肽的酶法制备及评价方法的研究进展[J]. 食品与发酵工业, 2019, 45(24): 246-253.
[13] 朱诗雅, 翟齐啸, 赵星, 孙新凯, 路江浩, 李华文, 赵建新, 张灏, 田丰伟, 陈卫. 不同乳杆菌缓解慢性酒精性肝损伤的作用比较[J]. 食品与发酵工业, 2019, 45(22): 20-26.
[14] 岳建伟, 师希雄, 孙金龙, 余群力, 朱琪. 宰后成熟过程中活性氧介导的氧化应激对肉品质的影响[J]. 食品与发酵工业, 2019, 45(2): 247-251.
[15] 龙霞, 黄先智, 丁晓雯. 鸭油对D-gal诱导小鼠氧化应激的改善作用[J]. 食品与发酵工业, 2019, 45(19): 90-97.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn