Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (15): 1-8    DOI: 10.13995/j.cnki.11-1802/ts.027052
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
构建分子内二硫键提升谷氨酰胺转氨酶热稳定性
杜建辉1, 刘松1,2*, 陆信曜1, 陈坚1*
1(江南大学 生物工程学院,江苏 无锡,214122)
2(粮食发酵工艺与技术国家工程实验室(江南大学),江苏 无锡,214122)
Improving thermostability of transglutaminase by introducing intramolecular disulfide bonds
DU Jianhui1, LIU Song1,2*, LU Xinyao1, CHEN Jian1*
1(School of Biotechnology,Jiangnan University,Wuxi 214122,China)
2(National Engineering Laboratory for Cereal Fermentation Technology,Jiangnan University,Wuxi 214122,China)
下载:  HTML  PDF (5266KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 茂原链霉菌(Streptomyces mobaraenesis)来源的谷氨酰胺转氨酶(transglutaminase,TGase)是一种重要的食品酶,广泛应用于蛋白基食品改性。为强化高温条件下的应用效果,拟通过构建蛋白分子内二硫键提高TGase的热稳定性。首先,基于野生型TGase晶体结构(PDB:1iu4)构建已报道TGase耐热突变体MS(S2P-S23V-Y24 N-S199A-K294L)的模拟结构。其次,通过Disulfide by design 2.0进行二硫键预测,根据二硫键成键自由能选择12种二硫键突变体在大肠杆菌(Escherichia coli)BL21(DE3)中表达。最后,对纯化后突变体的酶学性质进行表征和稳定化机制解析。结果显示,经60 ℃处理20 min,D118C-K121C、P244C-E249C和P22C-Q328C残余酶活力较MS分别提升了77.39%、71.58%和91.06%。与MS相比,MS-P22C-Q328C的t1/2 (60 ℃)和tm分别提升了2.06倍和1.06 ℃,但比酶活力下降13.2%。模拟结构分析表明,新增的二硫键可能降低了MS-P22C-Q328C中2个高柔性 loop的刚性,从而使其热稳定性增强。该研究结果将为高热稳定性TGase的开发提供基础数据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杜建辉
刘松
陆信曜
陈坚
关键词:  谷氨酰胺转氨酶  热稳定性  二硫键  理性设计  分子动力学模拟    
Abstract: Streptomyces mobaranensis transglutaminase TGase is an important food enzyme, which is widely used in protein-based food modification. In order to improve the thermostability of TGase, intramolecular disulfide bonds were introduced. Firstly, based on the crystal structure of wild-type TGase (PDB∶1iu4), the simulated structure of TGase thermostable mutant MS (S2P-S23V-Y24N-S199A-K294L) was constructed. Secondly, the disulfide bonds were predicted by Disulfide Design 2.0. According to the free energy of disulfide bonds formation, 12 disulfide bonds mutant were selected and expressed in Escherichia coli BL21(DE3). Finally, the enzymatic properties of the purified mutants were characterized, and the stabilization mechanism was analyzed. The results showed that the residual enzyme activities of D118C-K121C, P244C-E249C and P22C-Q328C were 77.39%, 71.58% and 91.06% higher than MS after treated at 60 ℃ for 20 min, respectively. Compared to MS, the t1/2 (60 ℃) and tm of MS-P22C-Q328C increased by 2.06 times and 1.06 ℃, respectively, but its specific activity was decreased by 13.2%. The simulated structure analysis showed that the new disulfide bonds might by reducing the rigidity of the two highly flexible loops in MS-P22C-Q328C to enhance the thermostability of TGase.
Key words:  transglutaminase    thermostability    disulfide bonds    rational design    molecular dynamics simulation
收稿日期:  2021-02-23      修回日期:  2021-04-06           出版日期:  2021-08-15      发布日期:  2021-08-23      期的出版日期:  2021-08-15
基金资助: 国家重点研发计划(2021YFC2101400);国家自然科学基金面上项目(32071474)
作者简介:  硕士研究生(刘松副教授和陈坚教授为共同通讯作者,E-mail:liusong@jiangnan.edu.cn;jchen@jiangnan.edu.cn)
引用本文:    
杜建辉,刘松,陆信曜,等. 构建分子内二硫键提升谷氨酰胺转氨酶热稳定性[J]. 食品与发酵工业, 2021, 47(15): 1-8.
DU Jianhui,LIU Song,LU Xinyao,et al. Improving thermostability of transglutaminase by introducing intramolecular disulfide bonds[J]. Food and Fermentation Industries, 2021, 47(15): 1-8.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.027052  或          http://sf1970.cnif.cn/CN/Y2021/V47/I15/1
[1] KASHIWAGI T,YOKOYAMA K I,ISHIKAWA K,et al.Crystal structure of microbial transglutaminase from Streptoverticillium mobaraense[J].Journal of Biological Chemistry,2002,277(46):44 252-44 260.
[2] ANDO H,ADACHI M,UMEDA K,et al.Purification and characteristics of a novel transglutaminase derived from microorganisms[J].Agricultural and Biological Chemistry,1989,53(10):2 613-2 617.
[3] STROP P.Versatility of microbial transglutaminase[J].Bioconjugate Chemistry,2014,25(5):855-862.
[4] LESIOW T,RENTFROW G K,XIONG Y L.Polyphosphate and myofibrillar protein extract promote transglutaminase-mediated enhancements of rheological and textural properties of PSE pork meat batters[J].Meat Science,2017,128:40-46.
[5] SERNA N,LAURA S G,UNZUETA U,et al.Protein-based therapeutic killing for cancer therapies[J].Trends in Biotechnology,2018,36(3):318-335.
[6] MARX C K,HERTEL T C,PIETZSCH M.Random mutagenesis of a recombinant microbial transglutaminase for the generation of thermostable and heat-sensitive variants[J].Journal of Biotechnology,2008,136(3-4):156-162.
[7] BUETTNER K,HERTEL T C,PIETZSCH M.Increased thermostability of microbial transglutaminase by combination of several hot spots evolved by random and saturation mutagenesis[J].Amino Acids,2012,42(2-3):987-996.
[8] LIU Y H,HUANG L,SHAN M Y,et al.Enhancing the activity and thermostability of Streptomyces mobaraensis transglutaminase by directed evolution and molecular dynamics simulation[J].Biochemical Engineering Journal,2019,151:107 333.
[9] MU D D,LU J J,SHU C,et al.Improvement of the activity and thermostability of microbial transglutaminase by multiple-site mutagenesis[J].Bioscience,Biotechnology,and Biochemistry,2018,82(1):106-109.
[10] MATSUMURA M,SIGNOR G,MATTHEWS B W.Substantial increase of protein stability by multiple disulphide bonds[J].Nature,1989,342(6247):291-293.
[11] ZHANG Z J,YANG J,XIE P J,et al.Characterization of a thermostable phytase from Bacillus licheniformis WHU and further stabilization of the enzyme through disulfide bond engineering[J].Enzyme and Microbial Technology,2020,142:109 679.
[12] 朱方剑. 二硫键理性设计提高Thermobifida fusca角质酶热稳定性研究[D].无锡:江南大学,2020.ZHU F J.Study on rational design of disulfide bonds to improve thermal stability of Thermobifida fusca cutinase[D].Wuxi:Jiangnan University,2020.
[13] 王睿, 喻晓蔚,徐岩.理性设计二硫键提高华根霉脂肪酶热稳定性[J].微生物学通报,2018,45(11):2 311-2 319.WANG R,YU X W,XU Y.Rational design of disulfide bond in Rhizopus chinensis lipase to improve thermostability[J].Microbiology China,2018,45(11):2 311-2 319.
[14] YANG J Y,ZHANG Y.I-TASSER server:New development for protein structure and function predictions[J].Nucleic Acids Research,2015,43(W1):W174-W181.
[15] CRAIG D B,DOMBKOWSKI A A.Disulfide by Design 2.0:a web-based tool for disulfide engineering in proteins[J].BMC Bioinformatics,2013,14:1 471-2 105.
[16] 杜坤, 周丽,堵国成,等.内含肽介导谷氨酰胺转胺酶酶原的活化[J].食品科学,2013,34(9):90-94.DU K,ZHOU L,DU G C,et al.Intein-mediated activation of transglutaminase from Streptomyces hygroscopicus[J].Food Science,2013,34(9):90-94.
[17] FOLK J E,COLE P W.Transglutaminase:Mechanistic features of the active site as determined by kinetic and inhibitor studies[J].Biochimica et Biophysica Acta (BBA)-Enzymology and Biological Oxidation,1966,122(2):244-264.
[18] MARK J A,TEEMU M,ROLAND S,et al.GROMACS:High performance molecular simulations through multi-level parallelism from laptops to supercomputers[J].SoftwareX,2015,1-2:19-25.
[19] PEZESHGI M H,MOFRAD M R,SANATI N A.H.Protein thermostability engineering[J].RSC Advances,2016,6(116):115 252-115 270.
[20] 郭超, 王志彦,甘一如,等.理性设计改造牛肠激酶的热稳定性[J].中国生物工程杂志,2016,36(8):46-54.GUO C,WANG Z Y,GAN Y R,et al.Engineering thermostability of bovine enterokinase by rational design method[J].China Biotechnology,2016,36(8):46-54.
[21] MASAZUMI M,WAYNE J B,MICHAEL L,et al.Stabilization of phage T4 lysozyme by engineered disulfide bonds[J].Proceedings of the National Academy of Sciences of the United States of America,1989,86(17):6 562-6 566.
[1] 杨菊, 毛银, 黄晓强, 周胜虎, 邓禹. 计算设计改造Thermobifida fusca 5-羧基-2-戊烯酰-辅酶A还原酶促进己二酸生产[J]. 食品与发酵工业, 2021, 47(7): 1-7.
[2] 杨娟, 罗玮倩, 何曼源. 大豆蛋白/蛋清蛋白复合凝胶特性的研究[J]. 食品与发酵工业, 2021, 47(6): 134-138.
[3] 黄笛, 李翠云, 万敏惠, 程琴, 骆香远, 钟佶良, 叶劲松. 谷氨酰胺转氨酶添加量对蛋黄粉乳化性和凝胶性的影响[J]. 食品与发酵工业, 2021, 47(3): 101-106.
[4] 周艳杰, 耿鹏, 时祎, 顾正华, 辛瑜, 石贵阳, 张梁. 嗜热玫瑰红球菌嗜热脂肪酶的重组表达与酶学性质研究[J]. 食品与发酵工业, 2021, 47(13): 16-22.
[5] 刘祥雨, 覃小丽, 钟金锋. 采用分子动力学模拟研究温度对乳球蛋白稳定性的影响[J]. 食品与发酵工业, 2020, 46(7): 89-96.
[6] 王乐, 包娜莎, 金征宇, 赵建伟, 周星, 田耀旗. 添加谷氨酰胺转氨酶对糙米蛋糕品质的影响[J]. 食品与发酵工业, 2020, 46(5): 174-180.
[7] 孙媛, 孔祥珍, 华欲飞. 小麦面筋蛋白含半胱氨酸小麦肽的富集与表征[J]. 食品与发酵工业, 2020, 46(19): 64-69.
[8] 高慧, 刘松. 谷氨酰胺转氨酶活化蛋白酶在大肠杆菌中的表达及性质研究[J]. 食品与发酵工业, 2020, 46(15): 1-7.
[9] 张艳, 张富新, 王毕妮, 邵玉宇, 刘隆刚. 谷氨酰胺转氨酶浓度对巴氏杀菌酸羊奶品质的影响[J]. 食品与发酵工业, 2019, 45(7): 201-206.
[10] 刘小琴, 杨岩, 吴喆瑜, 巩建业, 刘嘉男, 廖辉, 李文静, 李利君. 多点突变提高α-L-鼠李糖苷酶热稳定性[J]. 食品与发酵工业, 2019, 45(6): 23-29.
[11] 陈笑,李江华,刘松,堵国成. 采用饱和突变提高谷氨酰胺酶的热稳定性[J]. 食品与发酵工业, 2019, 45(5): 1-7.
[12] 陈思, 张富新, 王毕妮, 邵玉宇, 曹斌云. 预热处理对谷氨酰胺转氨酶催化羊乳热稳定性的影响[J]. 食品与发酵工业, 2019, 45(2): 25-30.
[13] 王文娟, 刘志东, 宁喜斌. 南极磷虾产低温淀粉酶菌株的筛选、鉴定及酶学性质研究[J]. 食品与发酵工业, 2019, 45(19): 38-44.
[14] 邵天赐, 何优, 张枫凯, 蔡刘滕子, 田艳杰, 周晨妍. 杂合木聚糖酶的设计及在毕赤酵母中的表达[J]. 食品与发酵工业, 2019, 45(19): 58-62.
[15] 叶文琪, 薛岚, 王超, 崔文璟, 周哲敏, 刘中美. 昆虫来源L-天冬氨酸-α-脱羧酶突变体的酶学性质表征[J]. 食品与发酵工业, 2019, 45(19): 63-67.
[1] PENG Zhi-fu et all . Comparison of odor-active compounds in distillates of five grains between first time and second time distillation using AEDA[J]. Food and Fermentation Industries, 2017, 43(11): 1 -8 .
[2] LIU Wen-ying et al. Protective effect of wheat oligopeptides and glutamine against gastrointestinal mucosa damage in rats[J]. Food and Fermentation Industries, 2017, 43(11): 51 -57 .
[3] FAN Zi-wei et al. Study on the physicochemical properties ofYunnansoft rice starch[J]. Food and Fermentation Industries, 2017, 43(11): 87 .
[4] . Isolation and identification of anaerobic bacteria in the process of Maotai-flavor liquor brewing[J]. Food and Fermentation Industries, 0, (): 1 .
[5] YU Qing-lin et al. Fermentation optimization of recombinant Yarrowia lipolytica for its efficient succinic acid production[J]. Food and Fermentation Industries, 0, (): 1 .
[6] ZHANG Xue-qin et al.. Optimization of preparation of flavor based on material by microbial composite fermentation of Antarctic krill[J]. Food and Fermentation Industries, 0, (): 1 .
[7] . Effect of Protein on Quality of Chinese Rice Wine #br# [J]. Food and Fermentation Industries, 0, (): 1 .
[8] Wang Yongde,Li Hang,Zhao Guohua,Chen Zongdao. Purification and Characterization of Yolk Anti-E.Coli Antibodies[J]. Food and Fermentation Industries, 2005, 31(11): 26 .
[9] YAO SU,YU Xue-jian,BAI Fei-rong,CAO Yan-hua,ZHAO Ting,ZHAI Lei,LIU Yang,GE Yuan-yuan,CHENG Kun,FENG Hui-jun,LING Kong,SHI Xiao-meng,WANG Yong-fang,ZHANG Xiao-xia,CHENG Chi. Research on the inventory of microbial species in Chinese traditional fermented foods[J]. Food and Fermentation Industries, 2017, 43(9): 238 .
[10] Chen Tao,Zhou Guanghong,Xu Xinglian. Effect of Phospholipase Activity on Water Holding Capacity of Chilled Meat[J]. Food and Fermentation Industries, 2006, 32(4): 153 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn