Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (21): 9-17    DOI: 10.13995/j.cnki.11-1802/ts.027082
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
低产乙醇本土有孢汉逊酵母的筛选及酿造特性
冯文倩1, 王倩1,2, 刘延琳1,2, 宋育阳1,2, 姜娇1,2, 伍新宇3, 秦义1,2*
1(西北农林科技大学 葡萄酒学院,陕西 杨凌,712100)
2(西北农林科技大学合阳葡萄试验示范站,陕西 合阳,715300)
3(新疆农业科学院园艺作物研究所,新疆 乌鲁木齐,830043)
Screening and oenological properties of Hanseniaspora strains with low ethanol yield
FENG Wenqian1, WANG Qian1,2, LIU Yanlin1,2, SONG Yuyang1,2, JIANG Jiao1,2, WU Xinyu3, QIN Yi1,2*
1(College of Enology, Northwest A&F University, Yangling 712100, China)
2(Heyang Viticulture Experiment Station of Northwest A&F University, Heyang 715300, China)
3(Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830043, China)
下载:  HTML  PDF (3032KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为获得具有低产乙醇特性的优良本土有孢汉逊酵母菌株,利用模拟葡萄汁发酵评估了来自宁夏、甘肃、陕西和新疆葡萄酒产区的53株本土有孢汉逊酵母的产乙醇能力。筛选获得4株乙醇产率较低且发酵速率较快的有孢汉逊酵母,分别是仙人掌有孢汉逊酵母(Hanseniaspora opuntiae)HoA-1-3、HoC-4-2和葡萄汁有孢汉逊酵母(Hanseniaspora uvarum)HuB-2-2、HuC-3-2,并进一步考察了其葡萄酒酿造特性。结果表明,与酿酒酵母(Saccharomyces cerevisiae)NX11424相比,HoA-1-3、HoC-4-2、HuB-2-2和HuC-3-2的乙醇产率分别降低23.87%、19.25%、10.74%和18.74%。4株有孢汉逊酵母均能耐受400 g/L糖、300 mg/L SO2、pH 2.8、10 ℃低温、40 ℃高温,均不具有针对酿酒酵母NX11424的嗜杀活性,此外,HoA-1-3和HoC-4-2可以耐受6%酒精度,HoC-4-2和HuC-3-2均不产H2S。最终,筛选得到能降低乙醇产率且酿造特性较好的本土仙人掌有孢汉逊酵母HoC-4-2和葡萄汁有孢汉逊酵母HuC-3-2,为低产乙醇非酿酒酵母的开发和应用奠定了基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
冯文倩
王倩
刘延琳
宋育阳
姜娇
伍新宇
秦义
关键词:  仙人掌有孢汉逊酵母  葡萄汁有孢汉逊酵母  酿造特性  发酵特性  低产乙醇    
Abstract: In order to obtain excellent indigenous Hanseniaspora strains with low ethanol yield, fifty-three Hanseniaspora strains selected from the wine-producing region of Ningxia, Gansu, Shaanxi and Xinjiang were evaluated. Hanseniaspora opuntiae HoA-1-3, HoC-4-2 and Hanseniaspora uvarum HuB-2-2, HuC-3-2 were screened. The results showed that the ethanol yield of strains HoA-1-3, HoC-4-2, HuB-2-2 and HuC-3-2 were reduced by 23.87%, 19.25%, 10.74% and 18.74%, respectively, compared with Saccharomyces cerevisiae NX11424. The four strains displayed good tolerance to 400 g/L of sugar, 300 mg/L of SO2, pH 2.8, extreme temperatures 10℃ and 40℃, and no killing activity against S. cerevisiae NX11424. In addition, HoA-1-3 and HoC-4-2 could tolerate 6% vol of ethanol. HoC-4-2 and HuC-3-2 did not produce H2S. In conclusion, H. opuntiae HoC-4-2 and H. uvarum HuC-3-2 had good oenological properties, which laid a foundation for further development and application of non-Saccharomyces yeast with low ethanol yield.
Key words:  Hanseniaspora opuntiae    Hanseniaspora uvarum    oenological properties    fermentation characteristics    low ethanol yield
收稿日期:  2020-02-23      修回日期:  2021-04-07           出版日期:  2021-11-15      发布日期:  2021-11-30      期的出版日期:  2021-11-15
基金资助: 国家重点研发计划项目(2019YFD1002500);国家自然科学基金项目(31301541;31960470);国家现代农业葡萄产业技术体系建设专项(CARS-29-jg-3)
作者简介:  硕士研究生(秦义副教授为通讯作者,E-mail:qinyi@nwsuaf.edu.cn)
引用本文:    
冯文倩,王倩,刘延琳,等. 低产乙醇本土有孢汉逊酵母的筛选及酿造特性[J]. 食品与发酵工业, 2021, 47(21): 9-17.
FENG Wenqian,WANG Qian,LIU Yanlin,et al. Screening and oenological properties of Hanseniaspora strains with low ethanol yield[J]. Food and Fermentation Industries, 2021, 47(21): 9-17.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.027082  或          http://sf1970.cnif.cn/CN/Y2021/V47/I21/9
[1] MESTRE FURLANI M V M,MATURANO Y P,COMBINA M,et al.Selection of non-Saccharomyces yeasts to be used in grape musts with high alcoholic potential:A strategy to obtain wines with reduced ethanol content[J].FEMS Yeast Research,2017,17(2).DOI:10.1093/femsyr/fox010.
[2] GOOLD H D,KROUKAMP H,WILLIAMS T C,et al.Yeast’s balancing act between ethanol and glycerol production in low-alcohol wines[J].Microbial Biotechnology,2017,10(2):264-278.
[3] CANONICO L,SOLOMON M,COMITINI F,et al.Volatile profile of reduced alcohol wines fermented with selected non-Saccharomyces yeasts under different aeration conditions[J].Food Microbiology,2019,84:103 247.
[4] ENGLEZOS V,CRAVERO F,TORCHIO F,et al.Oxygen availability and strain combination modulate yeast growth dynamics in mixed culture fermentations of grape must with Starmerella bacillaris and Saccharomyces cerevisiae[J].Food Microbiology,2018,69:179-188.
[5] MATURANO Y P,MESTRE M V,KUCHEN B,et al.Optimization of fermentation-relevant factors:A strategy to reduce ethanol in red wine by sequential culture of native yeasts[J].International Journal of Food Microbiology,2019,289:40-48.
[6] VARELA J,VARELA C.Microbiological strategies to produce beer and wine with reduced ethanol concentration[J].Current Opinion in Biotechnology,2019,56:88-96.
[7] FRESNO J M,MORATA A,LOIRA I,et al.Use of non-Saccharomyces in single-culture,mixed and sequential fermentation to improve red wine quality[J].European Food Research and Technology,2017,243(12):2 175-2 185.
[8] RÖCKER J,STRUB S,EBERT K,et al.Usage of different aerobic non-Saccharomyces yeasts and experimental conditions as a tool for reducing the potential ethanol content in wines[J].European Food Research and Technology,2016,242(12):2 051-2 070.
[9] TRONCHONI J,CURIEL J A,SAENZ-NAVAJAS M P,et al.Aroma profiling of an aerated fermentation of natural grape must with selected yeast strains at pilot scale[J].Food Microbiology,2018,70:214-223.
[10] ROSSOUW D,BAUER F F.Exploring the phenotypic space of non-Saccharomyces wine yeast biodiversity[J].Food Microbiology,2016,55:32-46.
[11] ROLLE L,ENGLEZOS V,TORCHIO F,et al.Alcohol reduction in red wines by technological and microbiological approaches:A comparative study[J].Australian Journal of Grape and Wine Research,2018,24(1):62-74.
[12] HONG Y A,PARK H D.Role of non-Saccharomyces yeasts in Korean wines produced from Campbell early grapes:Potential use of Hanseniaspora uvarum as a starter culture[J].Food Microbiology,2013,34(1):207-214.
[13] GOBBI M,VERO L,SOLIERI L,et al.Fermentative aptitude of non-Saccharomyces wine yeast for reduction in the ethanol content in wine[J].European Food Research and Technology,2014,239(1):41-48.
[14] ZHU X L,NAVARRO Y,MAS A,et al.A rapid method for selecting non-Saccharomyces strains with a low ethanol yield[J].Microorganisms,2020,8(5):658.
[15] SPIROPOULOS A,BISSON L F.MET17 and hydrogen sulfide formation in Saccharomyces cerevisiae[J].Applied and Environmental Microbiology,2000,66(10):4 421-4 426.
[16] 杨诗妮, 叶冬青,贾红帅,等.本土戴尔有孢圆酵母在葡萄酒酿造中的应用潜力[J].食品科学,2019,40(18):108-115.
YANG S N,YE D Q,JIA H S,et al.Oenological potential of indigenous Torulaspora delbrueckii for winemaking[J].Food Science,2019,40(18):108-115.
[17] LI Y,ZHANG Y J,LIU M L,et al.Saccharomyces cerevisiae isolates with extreme hydrogen sulfide production showed different oxidative stress resistances responses during wine fermentation by RNA sequencing analysis[J].Food Microbiology,2019,79:147-155.
[18] WANG C X,LIU M L,LI Y,et al.Hydrogen sulfide synthesis in native Saccharomyces cerevisiae strains during alcoholic fermentations[J].Food Microbiology,2018,70:206-213.
[19] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会.GB/T 15038—2006 葡萄酒、果酒通用分析方法[S].北京:中国标准出版社,2008.
General Administration of Quality Supervision,Inspection and Quarantine of the People's Republic of China,Standardization Administration of China.GB/T 15038—2006 Analytical methods of wine and fruit wine[S].Beijing:Standards Press of China,2008.
[20] 冯莉, 陈雪,李丽,等.5株克鲁维毕赤酵母的酿造学特性[J].中国食品学报,2018,18(12):66-73.
FENG L,CHEN X,LI L,et al.The enology characteristics of five strains of Pichia kluyveri[J].Journal of Chinese Institute of Food Science and Technology,2018,18(12):66-73.
[21] HEIT C,MARTIN S J,YANG F,et al.Osmoadaptation of wine yeast (Saccharomyces cerevisiae) during Icewine fermentation leads to high levels of acetic acid[J].Journal of Applied Microbiology,2018,124(6):1 506-1 520.
[22] 李华, 王华,袁春龙.葡萄酒工艺学[M].北京:科学出版社,2007.
LI H,WANG H,YUAN C L.Wine Technology[M].Beijing:Science Press,2007.
[23] 刘超帝, 缪礼鸿,陈瑾,等.耐高温酵母菌的筛选及其乙醇发酵特性[J].食品科学,2016,37(19):128-134.
LIU C D,MIAO L H,CHEN J,et al.Isolation and alcohol fermentation characteristics of thermotolerant yeasts[J].Food Science,2016,37(19):128-134.
[24] 原苗苗. 非酿酒酵母及其发酵温度对葡萄酒香气的影响[D].济南:齐鲁工业大学,2018.
YUAN M M.Effects of non-Saccharomyces and fermentation temperature on wine aroma[D].Jinan:Qilu University of Technology,2018.
[25] ALBERTIN W,MIOT-SERTIER C,BELY M,et al.Oenological prefermentation practices strongly impact yeast population dynamics and alcoholic fermentation kinetics in Chardonnay grape must[J].International Journal of Food Microbiology,2014,178:87-97.
[26] 李丽, 冯莉,秦义,等.野生嗜杀白假丝酵母LFA418的产毒条件优化及其毒素粗提物特性[J].食品科学,2017,38(12):50-56.
LI L,FENG L,QIN Y,et al.Optimization of culture conditions for toxin production by wild killer yeast Candida albicans LFA418[J].Food Science,2017,38(12):50-56.
[1] 熊蝶, 袁岚玉, 李媛媛, 范鹏飞, 冯武. 陕西泡菜中降解亚硝酸盐乳酸菌的筛选及其发酵特性与耐受性研究[J]. 食品与发酵工业, 2021, 47(6): 139-144.
[2] 冯华峰, 韩瑨, 王晓花, 吴正钧. 牛类芽孢杆菌BD3526发酵麦麸抑制变形链球菌的特性[J]. 食品与发酵工业, 2021, 47(5): 17-21.
[3] 王曼, 杨琛, 覃晓玉, 康孟杰, 郝桂芳, 王承明. 鲊肉粉中乳酸菌和葡萄球菌的筛选及鉴定[J]. 食品与发酵工业, 2021, 47(5): 22-27.
[4] 任海东, 李兴飞, 成吕睿, 鲁绪强, 刘军, 时玉强, 华欲飞. 酸奶发酵剂中菌株分离重组及其在豆乳中的发酵特性[J]. 食品与发酵工业, 2021, 47(21): 24-31.
[5] 王磊, 宗丽娜, 高宗露, 鲁茂林, 王文琼, 陈大卫, 徐粉林, 顾瑞霞. 复合乳酸菌发酵酸乳贮藏期稳定性及其风味物质的研究[J]. 食品与发酵工业, 2021, 47(12): 55-62.
[6] 王浩, 黄丹, 余东, 郭辉祥, 邹永芳, 罗惠波. 扣囊复膜酵母菌对固态混菌发酵体系微生物菌群结构及代谢的影响[J]. 食品与发酵工业, 2021, 47(11): 45-52.
[7] 梁强, 姚英政, 熊伟, 曾诗琴, 宣朴. 亲水胶体对马铃薯-小麦面团粉质和发酵特性的影响[J]. 食品与发酵工业, 2021, 47(11): 188-193.
[8] 游玲, 谭壹, 隆清扬, 陈宏, 周荣清, 赵东. 浓香型白酒糟醅中酵母Geotrichum sp.的固态发酵特性[J]. 食品与发酵工业, 2021, 47(1): 55-61.
[9] 郭燕, 钟迟迪, 董晓山, 卫春会, 任志强. 中高温大曲中酵母菌的分离及其在小曲酒中发酵性能初探[J]. 食品与发酵工业, 2020, 46(8): 78-84.
[10] 刘晓柱, 赵湖冰, 李银凤, 于志海, 刘晓辉, 黄名正. 一株刺梨葡萄汁有孢汉逊酵母的鉴定及酿酒特性分析[J]. 食品与发酵工业, 2020, 46(8): 97-104.
[11] 郑海武, 雷蕾, 李正英, 赵雪平, 张美枝, 李婷, 黄海英, 李晓娟, 王春燕. 本土优良酿酒酵母的酿造学特性[J]. 食品与发酵工业, 2020, 46(8): 118-122.
[12] 吴殿辉, 李晓敏, 蔡国林, 孙军勇, 谢广发, 陆健. 低产尿素黄酒酵母工程菌的酿造特性[J]. 食品与发酵工业, 2020, 46(3): 1-7.
[13] 迟珺曦, 雷文平, 刘孝芳, 刘成国. 干酪乳杆菌LC-7在牛乳中的生长及发酵特性[J]. 食品与发酵工业, 2020, 46(22): 208-213.
[14] 吴健, 何伟, 王建成, 杨玉蓉, 蓝彩红, 刘盛钢, 吴小霞, 林峰, 郭安, 杨涛. 酿酒酵母与产香酵母发酵特性及其相互作用规律[J]. 食品与发酵工业, 2020, 46(20): 78-87.
[15] 章之柱, 尹金彦, 孟洋, 陈莉, 卢红梅. 桑葚果园中酿酒酵母的分离鉴定及特性研究[J]. 食品与发酵工业, 2020, 46(14): 148-155.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn