Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (21): 170-177    DOI: 10.13995/j.cnki.11-1802/ts.027095
  生产与科研应用 本期目录 | 过刊浏览 | 高级检索 |
蒸汽爆破预处理对番茄皮渣膳食纤维组成及理化特性的影响
崔潇文1, 袁茂翼1, 叶发银1, 赵国华1,2*
1(西南大学 食品科学学院,重庆,400715)
2(重庆市特色食品工程技术研究中心,重庆,400715)
Effects of steam explosion pretreatment on the composition and physicochemical properties of dietary fiber from tomato pomace
CUI Xiaowen1, YUAN Maoyi1, YE Fayin1, ZHAO Guohua1,2*
1(College of Food Science, Southwest University, Chongqing 400715, China)
2(Chongqing Engineering Research Center for Regional Foods, Chongqing 400715, China)
下载:  HTML  PDF (2586KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以番茄皮渣为原料,研究蒸汽爆破预处理对番茄皮渣膳食纤维的化学组成及理化特性的影响。结果表明,蒸汽爆破预处理降低了番茄皮渣不溶性膳食纤维含量,显著提高了可溶性膳食纤维含量,且在1.0 MPa处理条件下可溶性膳食纤维含量达到最高[(10.19±1.00) g/100 g],较未处理样品提高了26.43%;使番茄皮渣中碱溶性果胶及总果胶的提取率显著降低,而水溶性果胶和螯合可溶性果胶的提取率提高,且随蒸汽爆破压力的增加提高越明显。蒸汽爆破预处理使番茄皮渣中果胶等大分子物质发生降解,一定程度上降低了番茄皮渣膳食纤维的持水力和膨胀力;提高了溶解性、持油力、亚硝酸根离子吸附能力及体外抗氧化能力;番茄皮渣膳食纤维的流动性得到改善,滑角、休止角及容重显著降低;番茄皮渣致密结构被明显破坏,暴露更多的网状多孔结构。因此,蒸汽爆破预处理可增加番茄皮渣可溶性膳食纤维含量,改善番茄皮渣膳食纤维表观特性和理化性质。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
崔潇文
袁茂翼
叶发银
赵国华
关键词:  蒸汽爆破  番茄皮渣  膳食纤维  单糖组成  理化特性    
Abstract: The effects of steam explosion pretreatment on the chemical composition and physicochemical properties of dietary fiber from tomato pomace were studied. The results showed that steam explosion pretreatment reduced the content of insoluble dietary fiber and significantly increased the content of soluble dietary fiber. The content of soluble dietary fiber reached the highest [(10.19±1.00) g/100 g] at 1.0 MPa. The extraction rate of alkali soluble pectin and total pectin in tomato pomace was significantly decreased by steam explosion pretreatment, and the extraction rate of water-soluble pectin and chelate soluble pectin in tomato pomace was increased by 26.43% compared with the untreated samples. The increase was more obvious with the increase of steam explosion pressure. After steam explosion pretreatment, pectin and other macromolecules in tomato pomace were degraded. To a certain extent, the water holding capacity and swelling capacity of the dietary fiber from tomato pomace were consequently decreased. However, solubility, oil holding capacity, nitrite ion adsorption capacity and antioxidant capacity in vitro were improved. In addition, the steam explosion treatment could improve the fluidity of the dietary fiber from tomato pomace, as evidenced by the significant decrease of the slip angle, repose angle and bulk density values. The dense structure of tomato pomace was destroyed and a more reticular porous structure was exposed. Therefore, steam explosion pretreatment could increase the content of soluble dietary fiber in tomato pomace, and improve the apparent properties and physicochemical properties of dietary fiber in tomato pomace.
Key words:  steam explosion    tomato pomace    dietary fiber    monosaccharide composition    physicochemical characteristics
收稿日期:  2021-02-20      修回日期:  2021-04-27           出版日期:  2021-11-15      发布日期:  2021-11-30      期的出版日期:  2021-11-15
基金资助: 国家重点研发计划资助项目(2016YFD0400204-2)
作者简介:  硕士研究生(赵国华教授为通讯作者,E-mail:zhaoguohua1971@163.com)
引用本文:    
崔潇文,袁茂翼,叶发银,等. 蒸汽爆破预处理对番茄皮渣膳食纤维组成及理化特性的影响[J]. 食品与发酵工业, 2021, 47(21): 170-177.
CUI Xiaowen,YUAN Maoyi,YE Fayin,et al. Effects of steam explosion pretreatment on the composition and physicochemical properties of dietary fiber from tomato pomace[J]. Food and Fermentation Industries, 2021, 47(21): 170-177.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.027095  或          http://sf1970.cnif.cn/CN/Y2021/V47/I21/170
[1] LU Z Q,WANG J J,GAO R P,et al.Sustainable valorisation of tomato pomace:A comprehensive review[J].Trends in Food Science & Technology,2019,86:172-187.
[2] NINČEVIć GRASSINO A, OSTOJIć J, MILETIĆ V,et al.Application of high hydrostatic pressure and ultrasound-assisted extractions as a novel approach for pectin and polyphenols recovery from tomato peel waste[J].Innovative Food Science & Emerging Technologies,2020,64:102424.
[3] 叶发银, 汪美凤,刘嘉,等.挤压处理番茄皮膳食纤维的化学组成与结构[J].食品科学,2014,35(13):43-48.
YE F Y,WANG M F,LIU J,et al.Composition and structural properties of extruded tomato peel dietary fiber[J].Food Science,2014,35(13):43-48.
[4] DEBUSCA A,TAHERGORABI R,BEAMER S K,et al.Physicochemical properties of surimi gels fortified with dietary fiber[J].Food Chemistry,2014,148(2):70-76.
[5] GRIGELMO-MIGUEL N,MARTIÍN-BELLOSO O.Comparison of dietary fibre from by-products of processing fruits and greens and from cereals[J].LWT-Food Science and Technology,1999,32(8):503-508.
[6] 何晓琴, 李苇舟,李富华,等.蒸汽爆破预处理在农产品加工副产物综合利用中的应用[J].食品与发酵工业,2019,45(8):252-257.
HE X Q,LI W Z,LI F H,et al.Application of steam-explosion pretreatment in utilizing agricultural by-products[J].Food and Fermentation Industries,2019,45(8):252-257.
[7] SHEN M,GE Y F,KANG Z Y,et al.Yield and physicochemical properties of soluble dietary fiber extracted from untreated and steam explosion-treated black soybean hull[J].Journal of Chemistry,2019:1-9.
[8] LI B,YANG W,NIE Y Y,et al.Effect of steam explosion on dietary fiber,polysaccharide,protein and physicochemical properties of okara[J].Food Hydrocolloids,2019,94:48-56.
[9] WANG T L,LIANG X H,RAN J J,et al.Response surface methodology for optimization of soluble dietary fiber extraction from sweet potato residue modified by steam explosion[J].International Journal of Food Science and Technology,2017,52(3):741-747.
[10] WANG L,XU H G,YUAN F,et al.Preparation and physico-chemical properties of soluble dietary fiber from orange peel assisted by steam explosion and dilute acid soaking[J].Food Chemistry,2015,185(14):90-98.
[11] ASP N G,JOHANSSON C G,HALLMER H,et al.Rapid enzymic assay of insoluble and soluble dietary fiber[J].Journal of Agricultural and Food Chemistry,1983,31(3):476-482.
[12] ZHOU L Y,WANG Y T,LIU F X,et al.Effect of high pressure carbon dioxide on the properties of water soluble pectin in peach juice[J].Food Hydrocolloids,2014,40:173-181.
[13] HAPPI EMAGA T,ROBERT C,RONKART S N,et al.Dietary fibre components and pectin chemical features of peels during ripening in banana and plantain varieties[J].Bioresource Technology,2008,99(10):4 346-4 354.
[14] QI J,LI Y,MASAMBA K G,et al.The effect of chemical treatment on the in vitro hypoglycemic properties of rice bran insoluble dietary fiber[J].Food Hydrocolloids,2016,52:699-706.
[15] CARVALHEIRO F,ESTEVES M P,PARAJÓ J C,et al.Production of oligosaccharides by autohydrolysis of brewery’s spent grain[J].Bioresource Technology,2004,91(1):93-100.
[16] LUO X L,WANG Q,ZHENG B D,et al.Hydration properties and binding capacities of dietary fibers from bamboo shoot shell and its hypolipidemic effects in mice[J].Food and Chemical Toxicology,2017,109:1 003-1 009.
[17] LI X H,LIU Y Z,YU Y Y,et al.Nanoformulations of quercetin and cellulose nanofibers as healthcare supplements with sustained antioxidant activity[J].Carbohydrate Polymers,2019,207:160-168.
[18] VON GADOW A,JOUBERT E,HANSMANN C F.Comparison of the antioxidant activity of aspalathin with that of other plant phenols of rooibos tea (Aspalathus linearis),α-tocopherol,BHT,and BHA[J].Journal of Agricultural and Food Chemistry,1997,45(3):632-638.
[19] BENZIE I F F,STRAIN J J.The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”:The FRAP assay[J].Analytical Biochemistry,1996,239(1):70-76.
[20] NENADIS N,WANG L F,TSIMIDOU M,et al.Estimation of scavenging activity of phenolic compounds using the ABTS·+ assay[J].Journal of Agricultural and Food Chemistry,2004,52(15):4 669-4 674.
[21] GIORGIO PE P,GAI F,ROTOLO L,et al.Effects of diets with increasing levels of dried tomato pomace on the performances and apparent digestibility of growing rabbits[J].Asian Journal of Animal and Veterinary Advances,2012,7(6):521-527.
[22] 李伦, 张晖,王兴国,等.超微粉碎对脱脂米糠膳食纤维理化特性及组成成分的影响[J].中国油脂,2009,34(2):56-59.
LI L,ZHANG H,WANG X G,et al.Effect of super micro-milling on the physicochemical properties and composition of dietary fibre prepared from defatted rice bran[J].China Oils and Fats,2009,34(2):56-59.
[23] BOGOLITSYN K G,KRASIKOVA A A,GUSAKOVA M A,et al.Application of steam explosion as a method of wood matrix thermochemical activation[J].Journal of the Indian Academy of Wood Science,2016,13(1):82-89.
[24] RAMOS-AGUILAR O P,ORNELAS-PAZ J D J,RUIZ-CRUZ S,et al.Effect of ripening and heat processing on the physicochemical and rheological properties of pepper pectins[J].Carbohydrate Polymers,2015,115:112-121.
[25] KAZEMI M,KHODAIYAN F,LABBAFI M,et al.Pistachio green hull pectin:Optimization of microwave-assisted extraction and evaluation of its physicochemical,structural and functional properties[J].Food Chemistry,2019,271:663-672.
[26] WANG W J,MA X B,JIANG P,et al.Characterization of pectin from grapefruit peel:A comparison of ultrasound-assisted and conventional heating extractions[J].Food Hydrocolloids,2016,61:730-739.
[27] DOCO T,WILLIAMS P,VIDAL S,et al.Rhamnogalacturonan Ⅱ,a dominant polysaccharide in juices produced by enzymic liquefaction of fruits and vegetables[J].Carbohydrate Research,1997,297(2):181-186.
[28] LONG D Q,YE F Y,ZHAO G H.Optimization and characterization of wheat bran modified by in situ enhanced CO2 blasting extrusion[J].LWT-Food Science and Technology,2014,59(2):605-611.
[29] SUI W J,XIE X,LIU R,et al.Effect of wheat bran modification by steam explosion on structural characteristics and rheological properties of wheat flour dough[J].Food Hydrocolloids,2018,84:571-580.
[30] ZHAO G H,ZHANG R F,DONG L H,et al.Particle size of insoluble dietary fiber from rice bran affects its phenolic profile,bioaccessibility and functional properties[J].LWT-Food Science and Technology,2018,87:450-456.
[31] FIGUEROLA F,HURTADO M L,ESTÉVEZ A M,et al.Fibre concentrates from apple pomace and citrus peel as potential fibre sources for food enrichment[J].Food Chemistry,2005,91(3):395-401.
[32] SUI W J,XIAO Y,LIU R,et al.Steam explosion modification on tea waste to enhance bioactive compounds’ extractability and antioxidant capacity of extracts[J].Journal of Food Engineering,2019,261:51-59.
[33] NAVARRO-GONZÁLEZ I,GARCÍA-VALVERDE V,GARCíA-ALONSO J,et al.Chemical profile,functional and antioxidant properties of tomato peel fiber[J].Food Research International,2011,44(5):1 528-1 535.
[34] VALDEZ-MORALES M,ESPINOSA-ALONSO L G,ESPINOZA-TORRES L C,et al.Phenolic content and antioxidant and antimutagenic activities in tomato peel,seeds,and byproducts[J].Journal of Agricultural and Food Chemistry,2014,62(23):5 281-5 289.
[35] HUANG C C,CHEN Y F,WANG C C.Effects of micronization on the physico-chemical properties of peels of three root and tuber crops[J].Journal of the Science of Food and Agriculture,2010,90(5):759-763.
[1] 鲁朝凤, 黄佳琦, 黄勇桦, 杨士花, 陈壁, 杨明静, 李永强. 青稞膳食纤维和多酚对肠道微生物的协同调节作用[J]. 食品与发酵工业, 2021, 47(8): 6-13.
[2] 陈晓思, 贺稚非, 王泽富, 李洪军. 过氧自由基对兔肉肌原纤维蛋白理化性质及结构的影响[J]. 食品与发酵工业, 2021, 47(8): 54-61.
[3] 郑欧阳, 孙钦秀, 刘书成, 潘燕墨. 香辛料提取物复配对风干肠品质和生物胺的影响[J]. 食品与发酵工业, 2021, 47(8): 90-95.
[4] 叶彤, 聂聪怡, 李林强. 羊乳巴氏杀菌条件的筛选[J]. 食品与发酵工业, 2021, 47(8): 152-157.
[5] 李红娟, 刘婷婷, 邹璇, 赵树静, 李丹, 李媛, 李洪波, 于景华. 乳清蛋白-黄油乳液凝胶对低脂酸奶理化特性及品质的影响[J]. 食品与发酵工业, 2021, 47(7): 71-77.
[6] 陈晓思, 贺稚非, 王泽富, 许雄, 李洪军. 蒸汽爆破技术的应用现状与发展前景[J]. 食品与发酵工业, 2021, 47(7): 322-328.
[7] 张俊, 胡玲, 张三杉, 余梦玲, 雷激. 不同发芽阶段高粱粉理化及功能特性的变化[J]. 食品与发酵工业, 2021, 47(6): 68-74.
[8] 李萍, 普绍荣, 李凤英, 左方骏, 张欣, 赵飞, 刘建. 碾磨度对粳稻外观品质和食味理化特性的影响[J]. 食品与发酵工业, 2021, 47(4): 21-26.
[9] 李琦, 曾凡坤, 华蓉, 王继飞. 响应面法优化超声辅助提取韭菜根不溶性膳食纤维[J]. 食品与发酵工业, 2021, 47(3): 128-134.
[10] 李俊健, 高杰贤, 林锦铭, 黎攀, 杜冰. 不同发酵方式对柚皮泡菜理化特性和风味的影响[J]. 食品与发酵工业, 2021, 47(20): 212-218.
[11] 陈致印, 刘伟鹏, 王盈希, 曾立, 向国红, 刘桃李, 龚意辉. 三种不同改性方法对甘薯渣不溶性膳食纤维改性效果的研究[J]. 食品与发酵工业, 2021, 47(2): 57-62.
[12] 陈茹, 曾令英, 李洪军, 王春幸, 贺稚非. 复合黏合剂对兔肉排重组过程中理化特性的影响[J]. 食品与发酵工业, 2021, 47(2): 130-136.
[13] 江飞凤, 谭晓辉, 胡鹏刚, 潘雪梅, 闫锦. 超声-微波协同提取柚子皮多糖工艺优化及单糖组成、结构和抗氧化活性分析[J]. 食品与发酵工业, 2021, 47(2): 196-204.
[14] 雷爱玲, 范盛玉, 王亚楠, 陈厚荣, 张甫生. 大豆分离蛋白/魔芋葡甘聚糖复合脂肪模拟物的制备及结构分析[J]. 食品与发酵工业, 2021, 47(15): 111-119.
[15] 李菁, 吴聪聪, 叶沁, 唐麒雯, 孟祥河, 聂小华. 不同处理方法对豆渣膳食纤维结构和降血糖性质的影响[J]. 食品与发酵工业, 2021, 47(15): 178-184.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn