Research on the quality of wolfberry from different production areas
LI Manyi1,2, SHEN Tianchen1,2, LIU Chunfeng1,2, ZHENG Feiyun1,2, NIU Chengtuo1,2, LI Qi1,2, WANG Jinjing1,2*
1(The Key Laboratory of Industrial Biotechnology, Ministry of Education School of Biotechnology, Jiangnan University, Wuxi 214122, China) 2(Laboratory of Brewing Science and Technology, Jiangnan University, Wuxi 214122, China)
Abstract: Wolfberry is a kind of raw material in traditional Chinese medicine. Its quality is related to the producing area. In order to provide a reference for the quality evaluation of wolfberry and identification of their origin,4 kinds of wolfberry from different production areas (Ningxia, Xinjiang, Qinghai and Inner Mongolia) were analyzed in the physio-chemical index, active substance and volatile flavor compounds. The results showed that there were certain differences in the physio-chemical index of wolfberry between different regions and the content of active substances in wolfberry of Ningxia and Qinghai production area showed a high level. The detection of headspace-gas chromatography-ion mobility spectroscopy combined with partial least squares discrimination analysis showed that 16 kinds of substances had significant content differences between producing areas. 1-propanol was a unique substance of the Inner Mongolia area which could be used to identify Inner Mongolia wolfberry. Furfural, 1-octene-3-ol, cis-3-hexen-1-ol, 2-methyl butanal and methyl butyrate selected by variable importance in projection value could be used as marker to distinguish the origin of wolfberry.
李曼祎,沈天辰,刘春凤,等. 不同产地枸杞品质差异研究[J]. 食品与发酵工业, 2021, 47(24): 56-63.
LI Manyi,SHEN Tianchen,LIU Chunfeng,et al. Research on the quality of wolfberry from different production areas[J]. Food and Fermentation Industries, 2021, 47(24): 56-63.
POTTERAT O.Goji (Lycium barbarum L.Chinese):phytochemistry, pharmacology and safety in the perspective of traditional uses and recent popularity[J].Planta Medica, 2010, 76(1):7-19.
[2]
CHEN S Y, LIANG L N, WANG Y, et al.Synergistic immunotherapeutic effects of Lycium barbarum polysaccharide and interferon-α2b on the murine Renca renal cell carcinoma cell line in vitro and in vivo[J].Molecular Medicine Reports, 2015, 12 (5):6 727-6 737.
[3]
AHN M, PARK J S, CHAE S, et al.Hepatoprotective effects of Lycium Chinese Miller fruit and its constituent betaine in CCl4-induced hepatic damage in rats[J].Acta histochemica, 2014, 116(6):1 104-1 112.
[4]
GAMBOA G, VSQUEZ V, QUIROZ C, et al.Carignan phenolic composition in wines from ten sites of the Maule Valley (Chile):Location and rootstock implications[J].Scientia Horticulturae, 2018, 234:63-73.
[5]
ZHANG S S, WEI Y M, WEI S, et al.Authentication of Zhongning wolfberry with geographical indication by mineral profile[J].International Journal of Food Science & Technology, 2017, 52(2):457-463.
[6]
GALLEGOS J, ARCE C, JORDANO R, et al.Target identification of volatile metabolites to allow the differentiation of lactic acid bacteria by gas chromatography ion mobility spectrometry[J].Food Chemistry, 2017, 220:362-370.
[7]
PUTON J, NAMIESNIK J.Ion mobility spectrometry:Current status and application for chemical warfare agents detection[J].Trac Trends in Analytical Chemistry, 2016, 85(Part B):10-20.
[8]
LI M Q, YANG R W, ZHANG H, et al.Development of a flavor fingerprint by HS-GC-IMS with PCA for volatile compounds of Tricholoma matsutake Singer[J].Food Chemistry, 2019, 290:32-39.
[9]
ARROYO M N, MARTIN G A, JURADO C N, et al.Target vs spectral fingerprint data analysis of Iberian ham samples for avoiding labelling fraud using headspace-gas chromatography-ion mobility spectrometry[J].Food Chemistry, 2018, 246:65-73.
[10]
CHANG M, ZHAO P Z, ZHANG T, et al.Characteristic volatiles fingerprints and profiles determination in different grades of coconut oil by HS-GC-IMS and HS-SPME-GC-MS[J].International Journal of Food Science and Technology, 2020, 55(12):3 670-3 679.
[11]
吴有锋, 马世震, 谭亮, 等.柴达木枸杞化学成分的测定[J].中成药, 2017, 39(5):984-989.WU Y F, MA S Z, TAN L, et al.Determination of chemical consituents in Lycii Fructus from Qaidam Basin[J].Chinese Traditional Patent Medicine, 2017, 39(5):984-989.
[12]
FANG Y, LIU Y, WANG B, et al.Screening of the volatile compounds in fresh and thermally treated watermelon juice via headspace-gas chromatographyion mobility spectrometry and comprehensive two-dimensional gas chromatography-olfactory-mass spectrometry analysis[J].LWT, 2021, 137:110478.
[13]
孙达, 张红艳, 程运江, 等.11个产地纽荷尔脐橙果实风味物质含量差异[J].植物科学学报, 2015, 33(4):513-520.SUN D, ZHANG HY, CHENG Y J, et al.Contents of flavor components in Newhall Navel Oranges (Citrus sinensis) harvested from eleven production areas of China [J].Plant Science Journal, 2015, 33(4):513-520.
[14]
伊兴凯. 果实香气物质代谢谱及单糖转运体功能的研究[D].合肥:安徽农业大学, 2015.YI X K.Aromatic metabolite profiling and functional analysis for monosaccharide transporters in fruit[D].Hefei:Anhui Agricultural University, 2015.
[15]
王元基. 干旱对苹果品质的影响及其与糖代谢的关系[D].杨凌:西北农林科技大学, 2017.WANG Y J.Effects of drought on apple quality and its relationship with sugar metabolism[D].Yangling:Northwest A&F University, 2015.
[16]
吴中华, 李文丽, 赵丽娟, 等.枸杞分段式变温热风干燥特性及干燥品质[J].农业工程学报, 2015, 31 (11):287-293.WU Z H, LI W L, ZHAO L J, et al.Drying characteristics and product quality of Lycium barbarum under stages-varying temperatures drying process[J].Transactions of the Chinese Society of Agricultural English, 2015, 31 (11):287-293.
[17]
ZHANG Q Y, CHEN W W, ZHAO J H, et al.Functional constituents and antioxidant activities of eight Chinese native goji genotypes[J].Food Chemistry, 2016, 200:230-236.
[18]
LEA U S, SLIMESTAD R, SMEDVIG P, et al.Nitrogen deficiency enhances expression of specific MYB and bHLH transcription factors and accumulation of end products in the flavonoid pathway[J].Planta, 2007, 225(5):1 245-1 253.
[19]
JIA H, WANG J A, YANG Y, et al.Changes in flavonoid content and transcript levels of genes in the flavonoid pathway in tobacco under phosphorus deficiency[J].Plant Growth Regulation, 2014, 76(2):225- 231.
[20]
崔治家, 刘峰林, 张启立, 等.不同产地枸杞子中枸杞多糖含量的比较分析[J].华西药学杂志, 2020, 35(1):59-61.CUI Z J, LIU L F, ZHANG Q L, et al.Comparative analysis of the content of Lycium barbarum polysaccharide in Lycii Fructus from different places[J].West China Journal of Pharmaceutical Science, 2020, 35(1):59-61.
[21]
段毅, 吴保祥, 徐丽, 等.不同纬度地区植物中正构烷烃及其同位素组成[J].地质学报, 2011, 85(2):262-271.DUAN Y, WU B X, XU L, et al.Compositions of n-alkanes and their isotopes in plants from the different latitude regions in China[J].Acta Geologica Sinica, 2011, 85(2):262-271.
[22]
GARRIDO D R, DOBAO P M, ARCE L, et al.Determination of volatile compounds by GC-IMS to assign the quality of virgin olive oil[J].Food Chemistry, 2016, 187:572-579.
[23]
JIN J Y, ZHAO M Y, ZHANG N, et al.Stable isotope signatures versus gas chromatographyion mobility spectrometry to determine the geographical origin of Fujian Oolong tea (Camellia sinensis) sample[J].European Food Research and Technology, 2020, 246(5):955–964.
[24]
JI T, DAMI I E.Characterization of free flavor compounds in traminette grape and their relationship to vineyard training system and location[J].Journal of Food Science, 2008, 73(4):262-267.
[25]
RAMBLA J L, TIKUNOV Y M, MONFORTE A J, et al.The expanded tomato fruit volatile landscape[J].Journal of Experimental Botany, 2014, 65 (16):4 613-4 623.
[26]
吴有锋, 谭亮, 沈建伟, 等.柴达木枸杞中17种氨基酸的测定与分析[J].食品工业科技, 2017, 38(1):281-286.WU Y F, TAN L, SHEN J W, et al.Determination and analysis of 17 amino acids in Qaidam Chinese wolfberry[J].Science and Technology of Food Industry, 2017, 38(1):281-286.
[27]
EL HADI M A M, ZHANG F J, WU F F, et al.Advances in fruit aroma volatile research[J].Molecules, 2013, 18(7):8 200-8 229.
[28]
申济源. 基于 LOX 途径的果实香气物质形成与调控解析[D].杭州:浙江大学, 2013.SHEN J Y.Biosynthesis and regulation of fruit aroma-related volatiles derived from the LOX pathway[D].Hangzhou:Zhejiang university, 2013.
[29]
张明霞, 吴玉文, 段长青.葡萄与葡萄酒香气物质研究进展[J].中国农业科学, 2008, 41(7):2 098-2 104.ZHANG M X, WU Y W, DUAN C Q.Progress in study of aromatic compounds in grape and wine[J].Scientia Agricultura Sinica, 2008, 41(7):2 098-2 104.
[30]
WANG X R, ROGERS K M, LI Y, et al.Untargeted and targeted discrimination of honey collected by Apis cerana and Apis mellifera based on volatiles using HS-GC-IMS and HS-SPME-GC-MS[J].Journal of Agricultural and Food Chemistry, 2019, 67(43):12 144-12 152.