Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (16): 173-180    DOI: 10.13995/j.cnki.11-1802/ts.027381
  生产与科研应用 本期目录 | 过刊浏览 | 高级检索 |
热处理对负载叶黄素的罗非鱼分离蛋白乳液稳定性和体外消化的影响
陈艾霖1, 洪鹏志1,2, 宋春勇1, 冯瑞1, 李婷1, 周春霞1,2*, 林琼妮1
1(广东海洋大学 食品科技学院,广东省水产品加工与安全重点实验室,广东省海洋食品工程技术研究中心,广东 湛江,524088)
2(南方海洋科学与工程广东省实验室(湛江),广东 湛江,524088)
Effect of heat treatment on stability and in vitro digestion of lutein loaded tilapia protein isolate
CHEN Ailin1, HONG Pengzhi1,2, SONG Chunyong1, FENG Rui1, LI Ting1, ZHOU Chunxia1,2*, LIN Qiongni1
1(College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China)
2(Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524088, China)
下载:  HTML  PDF (8146KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 叶黄素是一种具有多种生物活性的类胡萝卜素,因高疏水性和低稳定性,其应用受到限制。为提升叶黄素的稳定性和生物利用率,以罗非鱼分离蛋白(tilapia protein isolate,TPI)作为乳化剂,高压均质制备负载叶黄素(200 μg/mL)的TPI乳液,探讨热处理(60、70、80、90 ℃,30 min)对乳液的稳定性和体外消化的影响。结果表明,热处理后,叶黄素乳液的粒径减小(P<0.05),电位绝对值增大(P<0.05),4 ℃下贮藏28 d无分层现象,且热处理温度低于80 ℃不会造成叶黄素降解。热处理能增加液滴的表面静电荷和乳液黏度,有利于抵抗液滴之间的聚集,乳液稳定性增加。其中,70 ℃加热30 min后叶黄素乳液的稳定性最好,乳液粒径减小至(490.33±8.42) nm,游离脂肪酸释放量达(94.22±2.67)%,叶黄素生物利用率为(35.69±2.06)%。TPI乳液能够作为疏水活性物质的载体,且热处理能明显提高乳液的稳定性和叶黄素的生物利用率,为叶黄素的应用提供新思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈艾霖
洪鹏志
宋春勇
冯瑞
李婷
周春霞
林琼妮
关键词:  罗非鱼分离蛋白  叶黄素  乳液  稳定性  体外消化    
Abstract: Lutein is a kind of carotenoid with many biological activities. Its application is limited due to its high hydrophobicity and low stability. In order to improve the stability and bioavailability of lutein, tilapia protein isolate (TPI) emulsion loading with lutein (200 μg/mL) was prepared by high pressure homogenization using tilapia protein isolate (TPI) as an emulsifying agent. The effects of heat treatment (60, 70, 80, 90 ℃, 30 min) on the stability and digestion of the emulsion were investigated. The results showed that with heat treatment, the particle size of lutein emulsion decreased (P<0.05), however, the absolute potential increased (P<0.05). And there was no delamination at 4 ℃ for 28 d. Moreover, the degradation of lutein was not caused when the heat treatment temperature was lower than 80 ℃. Besides, the heat treatment could increase the surface static charge of the droplet and the viscosity of the emulsion, which was beneficial to resist the aggregation of the droplet and increase the stability of the emulsion. After heat treatment at 70 ℃ for 30 min, lutein emulsion had the best stability, the particle size of the emulsion was reduced to (490.33 ± 8.42) nm. And the release amount of free fatty acids was (94.22±2.67)% and the bioavailability of lutein was (35.69±2.06)% respectively. TPI emulsion can be used as a carrier of hydrophobic active substances. And heat treatment can significantly improve the stability of the emulsion and the bioavailability of lutein, which provides new insights for the application of lutein.
Key words:  tilapia protein isolate    lutein    emulsion    stability    in vitro digestion
收稿日期:  2021-03-15      修回日期:  2021-04-17                发布日期:  2021-09-10      期的出版日期:  2021-08-25
基金资助: 广东省科技计划项目(2017A020208067);广东省现代农业产业技术体系创新团队建设项目(2019KJ150)
作者简介:  硕士研究生(周春霞副教授为通讯作者,E-mail:zhoucx@gdou.edu.cn)
引用本文:    
陈艾霖,洪鹏志,宋春勇,等. 热处理对负载叶黄素的罗非鱼分离蛋白乳液稳定性和体外消化的影响[J]. 食品与发酵工业, 2021, 47(16): 173-180.
CHEN Ailin,HONG Pengzhi,SONG Chunyong,et al. Effect of heat treatment on stability and in vitro digestion of lutein loaded tilapia protein isolate[J]. Food and Fermentation Industries, 2021, 47(16): 173-180.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.027381  或          http://sf1970.cnif.cn/CN/Y2021/V47/I16/173
[1] SAINI R K, KEUM Y S. Carotenoid extraction methods: A review of recent developments[J]. Food Chemistry, 2018, 240: 90-103.
[2] STEINER B M, MCCLEMENTS D J, DAVIDOV-PARDO G. Encapsulation systems for lutein: A review[J]. Trends in Food Science & Technology, 2018, 82: 71-81.
[3] MAIANI G, CASTON M J P, CATASTA G, et al. Carotenoids: Actual knowledge on food sources, intakes, stability and bioavailability and their protective role in humans[J]. Molecular Nutrition & Food Research, 2009, 53: 194-218.
[4] MCCLEMENTS D J, SALIVA T L, ZHANG R J, et al. Boosting the bioavailability of hydrophobic nutrients, vitamins, and nutraceuticals in natural products using excipient emulsions[J]. Food Research International, 2016, 88: 140-152.
[5] 卢筠梦, 赵雪, 徐幸莲. 蛋白界面膜及其评价方法研究进展[J]. 食品与发酵工业, 2021, 47(1): 285-292.
LU J M, ZHAO X, XU X L. Recent progress in protein interfacial film and its evaluation methods[J]. Food and Fermentation Industries, 2021, 47(1): 285-292.
[6] ZANG Z H, CHOU S, TIAN J, et al. Effect of whey protein isolate on the stability and antioxidant capacity of blueberry anthocyanins: A mechanistic and in vitro simulation study[J]. Food Chemistry, 2020, 336: 127 700.
[7] CHEN W Y, JU X R, ALUKO R E, et al. Rice bran protein-based nanoemulsion carrier for improving stability and bioavailability of quercetin[J]. Food Hydrocolloids, 2020, 108: 106 042.
[8] LI Q, HE S, XU W L, et al. Formation, stability and in vitro digestion of β-carotene in oil-in-water milk fat globule membrane protein emulsions[J]. Food Biophysics, 2018, 13: 198-207.
[9] HO K K H Y, SHROEN K, MARTIN G, et al. Physicochemical stability of lycopene-loaded emulsions stabilized by plant or dairy proteins[J]. Food Structure, 2017, 12: 34-42.
[10] 陈艾霖, 刘曼曼, 周春霞, 等. pH值对罗非鱼蛋白-大豆蛋白混合热凝胶特性及体外消化性的影响[J]. 食品研究与开发, 2021, 42(5): 38-45.
CHEN A L, LIU M M, ZHOU C X, et al. Effect of pH value on gelling properties and in vitro digestibility of heat-induced gel from tilapia protein-soy protein mixtures[J]. Food Research and Development, 2021, 42(5): 38-45.
[11] 周春霞, 刘诗长, 王瑛, 等. 酸/碱溶解-等电点沉淀法回收罗非鱼蛋白的工艺优化及蛋白组成分析[J]. 海南师范大学学报(自然科学版), 2015, 28(4): 39-44.
ZHOU C X, LIU S C, WANG Y, et al. Optimizing recovery and composition analysis of tilapia protein by acid/alkaline solubilization-isoelectric precipitation[J]. Journal of Hainan Normal University (Natural Science), 2015, 28(4): 39-44.
[12] CHALAMAIAH M, KUMAR B D, HEMALATHA R, et al. Fish protein hydrolysates: Proximate composition, amino acid composition, antioxidant activities and applications: A review[J]. Food Chemistry, 2012, 135(4): 3 020-3 038.
[13] MA W, WANG J, XU X, et al. Ultrasound treatment improved the physicochemical characteristics of cod protein and enhanced the stability of oil-in-water emulsion[J]. Food Research International, 2019, 121: 247-256.
[14] MA W, WANG J, WU D, et al. Physicochemical properties and oil/water interfacial adsorption behavior of cod proteins as affected by high-pressure homogenization[J]. Food Hydrocolloids, 2019, 100: 105429.
[15] DAMODARAN S, PARKIN K L, FENNEMA O R. Fennema′s Food Chemistry[M]. Fifth Edition England: Taylor and Francis, 2017.
[16] MA W, WANG J, WU D, et al. Effects of preheat treatment on the physicochemical and interfacial properties of cod proteins and its relation to the stability of subsequent emulsions[J]. Food Hydrocolloids, 2021, 112: 106338.
[17] ELIAS R J, MCCLEMRNTS D J, DECKER E A. Impact of thermal processing on the antioxidant mechanisms of continuous phase β-lactoglobulin in oil-in-water emulsions[J]. Food Chemistry, 2007, 104(4): 1 402-1 409.
[18] 丁俭, 张巧智, 韩天翔, 等. 热处理对大豆油脂体乳液特性的影响[J]. 食品科学, 2016,37(19): 8-14.
DING J, ZHANG Q Z, HAN T X, et al. Effect of heat treatment on properties of soybean oil body emulsion[J]. Food Science, 2016,37(19): 8-14.
[19] LI J N, GUO R, HU H, et al. Preparation optimization and storage stability of nanoemulsion-based lutein delivery systems[J]. Journal of Microencapsulation, 2018, 35(6): 570-583.
[20] YE A, WANG X, LIN Q, et al. Dynamic gastric stability and in vitro lipid digestion of whey-protein-stabilised emulsions: Effect of heat treatment[J]. Food Chemistry, 2020, 318(4): 126463.
[21] LIU C, WANG R, HE S, et al. The stability and gastro-intestinal digestion of curcumin emulsion stabilized with soybean oil bodies[J]. LWT-Food Science and Technology, 2020, 131: 109663.
[22] 李季楠, 胡浩, 吴雪娇, 等. 环境因素对叶黄素纳米乳液稳定性及其抗氧化活性的影响[J]. 食品科学, 2019, 40(19): 32-39.
LI J N, HU H, WU X J, et al. Effect of environmental conditions on the stability and free radical scavenging capacity of lutein-enrich nanoemulsion[J]. Food Science, 2019, 40(19): 32-39.
[23] SURH J, DECKER E A, MCCLEMENTS D J. Influence of pH and pectin type on properties and stability of sodium-caseinate stabilized oil-in-water emulsions[J]. Food Hydrocolloids, 2006, 20(5): 607-618.
[24] ARIADNA G F, ELENA A, ISABLE O S, et al. Delivery of β-carotene to the in vitro intestinal barrier using nanoemulsions with lecithin or sodium caseinate as emulsifiers[J]. LWT-Food Science and Technology, 2021, 135: 110059.
[25] LI Q, WANG Z, DAI C, et al. Physical stability and microstructure of rapeseed protein isolate/gum Arabic stabilized emulsions at alkaline pH[J]. Food Hydrocolloids, 2018, 88: 50-57.
[26] 李菊芳. 磷脂-大豆蛋白复合物形成机理及其理化、功能特性研究[D]. 北京: 中国农业大学, 2014.
LI J F. The formation mechanism of lecithin-soybean protein complex and the research of its physicochemical and functional properties[D]. Beijing: China Agricultural University, 2014.
[27] MOZAFARPOUR R, KOOCHEKI A, MILANI E, et al. Extruded soy protein as a novel emulsifier: Structure, interfacial activity and emulsifying property[J]. Food Hydrocolloids, 2019, 93: 361-373.
[28] SUI X, BI S, QI B, et al. Impact of ultrasonic treatment on an emulsion system stabilized with soybean protein isolate and lecithin: Its emulsifying property and emulsion stability[J]. Food Hydrocolloids, 2017, 63: 727-734.
[29] 吴燕燕, 熊添, 李来好, 等. 鱼肉蛋白的热变性研究进展[J]. 食品工业科技, 2018, 39(5): 343-347.
WU Y Y, XIONG T, LI L H, et al. A review of studies on thermal denaturation of fish protein[J]. Science and Technology of Food Industry, 2018, 39(5): 343-347.
[30] WANG J M, XIA N, YANG X Q, et al. Adsorption and dilatational rheology of heat-treated soy protein at the oil-water interface: Relationship to structural properties[J]. Journal of Agricultural and Food Chemistry, 2012, 60(12): 3 302-3 310.
[31] 田甜, 江中洋, 王中江, 等. 射流空化对大豆分离蛋白-磷脂酰胆碱乳化特性的影响[J]. 食品科学, 2020, 41(3): 99-105.
TIAN T, JIANG Z Y, WANG Z J, et al. Effect of jet cavitation on soy protein isolate-phosphatidylcholine emulsion properties[J]. Food Science, 2020, 41(3): 99-105.
[32] ZHANG X, QI B, XIE F, et al. Emulsion stability and dilatational rheological properties of soy/whey protein isolate complexes at the oil-water interface: Influence of pH[J]. Food Hydrocolloids, 2020, 113: 106391.
[33] AHMAD F T, ASENSTORFER R E, SORIANO I R, et al. Effect of temperature on lutein esterification and lutein stability in wheat grain[J]. Journal of Cereal Science, 2013, 58(3): 408-413.
[34] MA W, WANG J, WU D, et al. Effects of preheat treatment on the physicochemical and interfacial properties of cod proteins and its relation to the stability of subsequent emulsions[J]. Food Hydrocolloids, 2021, 112: 106338.
[35] NIK A M, WRIGHT A J, CORREDIG M. Surface adsorption alters the susceptibility of whey proteins to pepsin-digestion[J]. Journal of Colloid and Interfaces Science, 2010, 344(2): 372-381.
[36] 范三红, 刘晓华, 胡雅喃, 等. 加热处理对鱼肉蛋白质理化特性的影响[J]. 食品工业科技, 2014, 35(12): 104-107.
FAN S H, LIU X H, HU Y N. Effect of heat treatment on protein in physical and chemical properties[J]. Science and Technology of Food Industry, 2014, 35(12): 104-107.
[37] SALVIAT L, QIAN C, MARTIN-BESSOLO O, et al. Influence of particle size on lipid digestion and beta-carotene bioaccessibility in emulsions and nanoemulsions[J]. Food Chemistry, 2013, 141(2): 1 472-1 480.
[38] LIU C, WANG R, HE S, et al. The stability and gastro-intestinal digestion of curcumin emulsion stabilized with soybean oil bodies[J]. LWT-Food Science and Technology, 2020, 131: 109663.
[1] 夏天航, 魏子淏, 马磊, 奚晓鸿, 宋琳, 徐雅男, 薛长湖. 负载虾青素的油凝胶纳米乳液的构建及体外消化研究[J]. 食品与发酵工业, 2021, 47(9): 1-7.
[2] 杨丽嫔, 杨倩, 王黎丽, 周瑞敏, 高成成, 刘琴. 铁棍山药黏液复合乳液保鲜鲜切马铃薯研究[J]. 食品与发酵工业, 2021, 47(8): 46-53.
[3] 阮雁春, 彭旭东, 杨丹. 花生蛋白水解物对色拉酱贮藏稳定性的影响[J]. 食品与发酵工业, 2021, 47(8): 96-100.
[4] 李红娟, 刘婷婷, 邹璇, 赵树静, 李丹, 李媛, 李洪波, 于景华. 乳清蛋白-黄油乳液凝胶对低脂酸奶理化特性及品质的影响[J]. 食品与发酵工业, 2021, 47(7): 71-77.
[5] 冯鑫, 马良, 戴宏杰, 付余, 余永, 朱瀚昆, 王红霞, 张宇昊. 食品级Pickering乳液的稳定性及β-胡萝卜素的装载研究[J]. 食品与发酵工业, 2021, 47(6): 18-25.
[6] 钱蕾, 刘延峰, 李江华, 刘龙, 堵国成. 适应性进化和改造质粒稳定性促进枯草芽孢杆菌合成N-乙酰神经氨酸[J]. 食品与发酵工业, 2021, 47(5): 1-6.
[7] 吴唯娜, 冯洁茹, 方静宇, 邵平, 孙培龙, 徐靖, 李振皓. 铁皮石斛酶解多糖对姜黄素乳液功能性质的影响[J]. 食品与发酵工业, 2021, 47(5): 63-70.
[8] 王伟佳, 高晓夏月, 刘爱国, 刘立增, 王鹏程, 杨毅. 不同热处理无乳糖酸奶与普通酸奶品质的比较[J]. 食品与发酵工业, 2021, 47(5): 99-104.
[9] 王存堂, 高增明, 张福娟, 朱宏菲, 周庆雯, 孔保华. 洋葱皮乙醇提取物对生鲜猪肉色泽、脂质和蛋白质氧化稳定性的影响[J]. 食品与发酵工业, 2021, 47(3): 87-94.
[10] 姜曼. 蛋白质基Pickering乳液的研究进展[J]. 食品与发酵工业, 2021, 47(3): 259-264.
[11] 马亚琴, 贾蒙, 张晨. 高压均质技术在果汁加工中的应用[J]. 食品与发酵工业, 2021, 47(3): 265-273.
[12] 彭松林, 潘成磊, 康梦瑶, 李懿璇, 赵紫悦, 郑仁兵, 尚永彪. 卤烤鸭中类黑精的提取及其抗氧化活性与化学稳定性研究[J]. 食品与发酵工业, 2021, 47(2): 22-29.
[13] 洪森辉, 黄冰晴, 张晶怡, 费鹏. 越橘花色苷的酰化修饰及其稳定性改善研究[J]. 食品与发酵工业, 2021, 47(16): 84-89.
[14] 张新, 潘丽, 李雪琴, 尚方园. 递送体系运载β-胡萝卜素的研究进展[J]. 食品与发酵工业, 2021, 47(16): 283-287.
[15] 杜建辉, 刘松, 陆信曜, 陈坚. 构建分子内二硫键提升谷氨酰胺转氨酶热稳定性[J]. 食品与发酵工业, 2021, 47(15): 1-8.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn