Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (16): 52-58    DOI: 10.13995/j.cnki.11-1802/ts.027466
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
阳春砂根茎多糖分离纯化、结构表征及抗氧化活性
周洋1, 杨得坡1,2, 钱纯果1, 何翠淇1, 钟镜堂3, 徐新军1,2, 赵志敏1,2*
1(中山大学 药学院,广东 广州,510006)
2(广东省现代中药工程技术研究开发中心,广东 广州,510006)
3(广东呀依山珍稀药材种植有限公司,广东 河源,517428)
Purification, structural characterization and antioxidant activity of polysaccharide from the rhizome of Amomum villosum Lour
ZHOU Yang1, YANG Depo1,2, QIAN Chunguo1, HE Cuiqi1, ZHONG Jingtang3, XU Xinjun1,2, ZHAO Zhimin1,2*
1(School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China)
2(Guangdong Technology Research Center for Advanced Chinese Medicine, Guangzhou 510006, China)
3(Yayisan Chinese Herbs Plantation Co.Ltd., Heyuan 517428, China)
下载:  HTML  PDF (2236KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 该文以阳春砂根茎为原料,对阳春砂根茎多糖(Amomum villosrm rhizome polysaccharide,AVRP)进行分离纯化,并进一步研究结构特征和抗氧化活性,为后续开发利用提供依据。利用DEAE-52和Sephadex G-100柱色谱分离纯化得到AVRP-1。通过化学成分、高效凝胶渗透色谱、HPLC和傅里叶红外光谱分析对AVRP-1结构进行表征,以DPPH自由基和羟自由基清除率评价AVRP-1的抗氧化活性。结果显示,AVRP-1总糖含量为90.34%,蛋白质含量为0.64%,糖醛酸含量为43.59%;相对分子质量为3 372.01 kDa,是一种大分子质量酸性多糖;由甘露糖、鼠李糖、葡萄糖醛酸、半乳糖醛酸、葡萄糖、半乳糖和阿拉伯糖7种单糖组成,摩尔比为4.14∶4.98∶5.10∶23.77∶17.30∶28.51∶16.19;α和β构型的糖苷键是同时存在的;AVRP-1具有抗氧化活性,对DPPH自由基和羟自由基的半数有效浓度(half-maximal effective concentration,EC50)分别为4.50和2.47 mg/mL。研究结果表明,AVRP-1可作为天然抗氧化剂用于医药和功能性食品行业,该研究结果为充分利用阳春砂提供了理论基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周洋
杨得坡
钱纯果
何翠淇
钟镜堂
徐新军
赵志敏
关键词:  阳春砂根茎  多糖  分离纯化  结构表征  抗氧化活性    
Abstract: The rhizome of Amomum villosum was used as raw material to obtain the purified polysaccharide (AVRP-1), and the structural characteristics and antioxidant activities of AVRP-1 were further studied. DEAE-52 and Sephadex G-100 column chromatography were used to obtain AVRP-1. And the structure of AVRP-1 was characterized by chemical composition, high-performance gel permeation chromatography (HPGPC), HPLC and Fourier transform infrared (FT-IR) spectroscopy. The antioxidant activity of AVRP-1 was assessed based on the DPPH and hydroxyl radical scavenging rates in vitro. The results showed that the content of total sugar, protein and uronic acid of AVRP-1 was 90.34%, 0.64% and 43.59%, respectively. The relative molecular weight of AVRP-1 was 3 372.01 kDa. Moreover, AVRP-1 was composed of mannose, rhamnose, glucuronic acid, galacturonic acid, glucose, galactose and arabinose in the molar ratio of 4.14∶4.98∶5.10∶23.77∶17.30∶28.51∶16.19. The glycosidic bonds existed in both and configurations. The assay of antioxidant activity of AVRP-1 revealed that its half-maximal effective concentration (EC50) for DPPH and hydroxyl radical scavenging activity was 4.50 and 2.47 mg/mL, respectively. These results showed that AVRP-1 could be used as a natural antioxidant substance in the pharmaceutical and functional food industry, and provide a theoretical basis for making full use of A. villosum.
Key words:  rhizome of Amomum villosum Lour.    polysaccharides    isolation and purification    structural characterization    antioxidant activity
收稿日期:  2021-03-22      修回日期:  2021-04-27                发布日期:  2021-09-10      期的出版日期:  2021-08-25
基金资助: 国家重点研发计划(2017YFC1701100);广东省农业科技创新及推广体系建设项目(2020KJ142;2019KJ142;2021KJ268);国家自然科学基金(82073735)
作者简介:  硕士研究生(赵志敏副教授为通讯作者,E-mail:zhaozhm2@mail.sysu.edu.cn)
引用本文:    
周洋,杨得坡,钱纯果,等. 阳春砂根茎多糖分离纯化、结构表征及抗氧化活性[J]. 食品与发酵工业, 2021, 47(16): 52-58.
ZHOU Yang,YANG Depo,QIAN Chunguo,et al. Purification, structural characterization and antioxidant activity of polysaccharide from the rhizome of Amomum villosum Lour[J]. Food and Fermentation Industries, 2021, 47(16): 52-58.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.027466  或          http://sf1970.cnif.cn/CN/Y2021/V47/I16/52
[1] 姜春兰, 蔡锦源, 梁莹, 等.砂仁的有效成分及其药理作用的研究进展[J].轻工科技, 2020, 36(7):43-47.
JIANG C L, CAI J Y, LIANG Y, et al.Research progress on active components and pharmacological effects of Amomum villosum[J].Light Industry Science and Technology, 2020, 36(7):43-45;47.
[2] 尤小梅, 李远志, 廖有传, 等.春砂仁根和叶提取物抗氧化活性研究[J].食品科技, 2012, 37(2):226-229.
YOU X M, LI Y Z, LIAO Y C, et al.Antioxidant activity of the extracts from Amomum villosum roots and leaves[J].Food Science and Technology, 2012, 37(2):226-229.
[3] WANG J Q, HU S Z, NIE S P, et al.Reviews on mechanisms of in vitro antioxidant activity of polysaccharides[J].Oxidative Medicine and Cellular Longevity, 2016,64:1-13.
[4] RAMBERG J E, NELSON E D, SINNOTT R A.Immunomodulatory dietary polysaccharides:A systematic review of the literature[J].Nutrition Journal, 2010, 9(1):54-76.
[5] YANG X, JI H Y, FENG Y Y, et al.Structural characterization and antitumor activity of polysaccharides from Kaempferia galanga L.[J].Oxidative Medicine and Cellular Longevity, 2018.DOI:10.1155/2018/9579262.
[6] CUI J F, YE H, ZHU Y J, et al.Characterization and hypoglycemic activity of a rhamnan-type sulfated polysaccharide derivative[J].Marine Drugs, 2019, 17(21):1-14.
[7] ZHANG D Y, LI S J, XIONG Q P, et al.Extraction, characterization and biological activities of polysaccharides from Amomum villosum[J].Carbohydrate Polymers, 2013, 95(1):114-122.
[8] ZHANG J N, XIONG Q P, LI S J, et al.A comparison study on polysaccharides from novel hybrids of Amomum villosum and its female parent[J].International Journal of Biological Macromolecules, 2015, 81:396-399.
[9] YAN Y J, LI X, WAN M J, et al.Effect of extraction methods on property and bioactivity of water-soluble polysaccharides from Amomum villosum[J].Carbohydrate Polymers, 2015, 117(6):632-635.
[10] DUBOIS M, GILLES K A, HAMILTON J K, et al.Colorimetric method for determination of sugars and related substances[J].Analytical Chemistry, 1956, 28:350-356.
[11] BRADFORD M M.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J].Analytical Biochemistry, 1976, 72(1-2):248-254.
[12] BLUMENKRANTZ N, ASBOE-HANSEN G.New method for quantitative determination of uronic acids[J].Analytical Biochemistry, 1973, 54(2):484-489.
[13] 黄冬. 狗脊糖聚物的分离纯化、结构鉴定及抗骨质疏松活性研究[D].广州:广东药科大学, 2018.
HUANG D.Isolation, purification, structural characterization of saccharides from Cibotium barometz and its anti-osteoporosis activity[D].Guangzhou:Guangdong Pharmaceutical University, 2018.
[14] WANG Y F, JIA J X, REN X J, et al.Extraction, preliminary characterization and in vitro antioxidant activity of polysaccharides from Oudemansiella radicata mushroom[J].International Journal of Biological Macromolecules, 2018, 120:1 760-1 769.
[15] LI C, HUANG Q, FU X, et al.Characterization, antioxidant and immunomodulatory activities of polysaccharides from Prunella vulgaris Linn[J].International Journal of Biological Macromolecules, 2015, 75:298-305.
[16] DU B, ZENG H S, YANG Y D, et al.Anti-inflammatory activity of polysaccharide from Schizophyllum commune as affected by ultrasonication[J].International Journal of Biological Macromolecules, 2016, 91:100-105.
[17] WANG Y, LI X, ZHAO P, et al.Physicochemical characterizations of polysaccharides from Angelica sinensis Radix under different drying methods for various applications[J].International Journal of Biological Macromolecules, 2019, 121:381-389.
[18] DUAN M Y, SHANG H M, CHEN S L, et al.Physicochemical properties and activities of comfrey polysaccharides extracted by different techniques[J].International Journal of Biological Macromolecules, 2018, 115:876-882.
[19] HU Z Y, ZHOU H L, ZHAO J L, et al.Microwave-assisted extraction, characterization and immunomodulatory activity on RAW264.7 cells of polysaccharides from Trichosanthes kirilowii Maxim seeds[J].International Journal of Biological Macromolecules, 2020, 164:2 861-2 872.
[20] GUO R, TIAN S, LI X J, et al.Pectic polysaccharides from purple passion fruit peel:A comprehensive study in macromolecular and conformational characterizations[J].Carbohydrate Polymers, 2020, 229(1):115406.
[21] ZHU D Y, MA Y L, WANG C H, et al.Insights into physicochemical and functional properties of polysaccharides sequentially extracted from onion (Allium cepa L.)[J].International Journal of Biological Macromolecules, 2017, 105:1 192-1 201.
[22] BELTRAME G, TRYGG J, RAHKILA J, et al.Structural investigation of cell wall polysaccharides extracted from wild Finnish mushroom Craterellus tubaeformis (Funnel Chanterelle)[J].Food Chemistry, 2019, 301(15):125255.
[23] CHEN Y Q, LIU D, WANG D Y, et al.Hypoglycemic activity and gut microbiota regulation of a novel polysaccharide from Grifola frondosa in type 2 diabetic mice[J].Food and Chemical Toxicology, 2019, 126:295-302.
[24] FU Y, LI F, DING Y, et al.Polysaccharides from loquat (Eriobotrya japonica) leaves:Impacts of extraction methods on their physicochemical characteristics and biological activities[J].International Journal of Biological Macromolecules, 2020, 146:508-517.
[25] ZHAO C C, LI X, MIAO J, et al.The effect of different extraction techniques on property and bioactivity of polysaccharides from Dioscorea hemsleyi[J].International Journal of Biological Macromolecules, 2017, 102:847-856.
[26] ZHANG L, HU Y, DUAN X Y, et al.Characterization and antioxidant activities of polysaccharides from thirteen boletus mushrooms[J].International Journal of Biological Macromolecules, 2018, 113:1-7.
[27] ZHU Z Y, DONG F Y, LIU X C, et al.Effects of extraction methods on the yield, chemical structure and anti-tumor activity of polysaccharides from Cordyceps gunnii mycelia[J].Carbohydrate Polymers, 2016, 140(20):461-471.
[1] 冯艳钰, 臧延青. 三种小麦麸皮总黄酮的体外抗氧化活性[J]. 食品与发酵工业, 2021, 47(9): 16-24.
[2] 史瑛, 冯欣静, 周志磊, 姬中伟, 徐岳正, 毛健. 黄酒多糖对炎症性肠病及便秘作用机制的研究进展[J]. 食品与发酵工业, 2021, 47(9): 275-283.
[3] 刘志芳, 赵前程, 刘志东, 段蕊, 林娜, 张俊杰. 贝类多糖研究进展[J]. 食品与发酵工业, 2021, 47(9): 299-306.
[4] 牛娜娜, 沙如意, 杨陈铭, 王珍珍, 茹语婷, 戴静, 韩洪庚, 张黎明, 毛建卫. 预处理工艺对黑蒜功能性成分、抗氧化活性影响及相关性研究[J]. 食品与发酵工业, 2021, 47(8): 67-75.
[5] 王子涵, 向敏, 徐茂, 蒋和体. 响应面优化黑果腺肋花楸汁澄清工艺及其抗氧化活性评价[J]. 食品与发酵工业, 2021, 47(8): 189-196.
[6] 周雯, 庄蕾, 吴森. 植物多糖在Ⅱ型糖尿病降血糖作用方面的研究进展[J]. 食品与发酵工业, 2021, 47(8): 290-296.
[7] 姚丽文, 周宇芳, 孙继鹏, 王家星, 廖妙飞, 郑斌, 王芮, 邓尚贵, 相兴伟. 厚壳贻贝多糖对葡聚糖硫酸钠诱导的结肠炎改善作用[J]. 食品与发酵工业, 2021, 47(7): 109-115.
[8] 顾欣, 高涛, 刘梦雅, 丛之慧, 张诚雅, 肖乐艳, 李迪, 胡景涛. 梁平柚柚皮多糖的提取、结构解析及抗氧化能力研究[J]. 食品与发酵工业, 2021, 47(7): 137-145.
[9] 刘婷, 周欣, 赵超, 龚小见, 陈华国. 植物多糖对肾损伤干预效果及作用机制研究进展[J]. 食品与发酵工业, 2021, 47(7): 269-277.
[10] 张晓晓, 柴智, 冯进, 崔莉, 李春阳, 李莹, 黄午阳. 牛蒡多糖的提取及生物活性研究进展[J]. 食品与发酵工业, 2021, 47(6): 280-288.
[11] 彭燕鸿, 苏爱秋, 黄伟文, 蓝素桂, 杨天云, 谭强. 微生物嗜热脂肪酶研究进展[J]. 食品与发酵工业, 2021, 47(6): 289-294.
[12] 张耀, 张露, 刘俊, 涂宗财. 青鱼肉活性肽的制备及其抗肿瘤活性研究[J]. 食品与发酵工业, 2021, 47(5): 35-42.
[13] 匡文玲, 李佳, 韩林, 蒋永波, 邱玲岚, 汪开拓, 王敏. 柠檬果汁主要水溶性成分分析及对高脂诱导L-02肝细胞氧化损伤影响的研究[J]. 食品与发酵工业, 2021, 47(5): 43-47.
[14] 李梦钰, 刘会平, 贾琦, 吴亚茹. 天冬多糖理化性质和流变学特性研究[J]. 食品与发酵工业, 2021, 47(5): 48-56.
[15] 吴唯娜, 冯洁茹, 方静宇, 邵平, 孙培龙, 徐靖, 李振皓. 铁皮石斛酶解多糖对姜黄素乳液功能性质的影响[J]. 食品与发酵工业, 2021, 47(5): 63-70.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn