Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (16): 78-83    DOI: 10.13995/j.cnki.11-1802/ts.027475
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
利用表没食子儿茶素-3-没食子酸酯回收大豆蛋白酶解液中多肽的研究
王佳悦, 董亚博, 付元涛, 兰天, 隋晓楠, 王欢, 江连洲*
(东北农业大学,黑龙江 哈尔滨,150030)
Study on recovery of peptides from soybean proteolysis solution with epigallocatechin-3-gallate
WANG Jiayue, DONG Yabo, FU Yuantao, LAN Tian, SUI Xiaonan, WANG Huan, JIANG Lianzhou*
(College of Food Science, Northeast Agricultural University, Harbin 150030, China)
下载:  HTML  PDF (1719KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 在不同表没食子儿茶素-3-没食子酸酯(epigallocatechin-3-gallate,EGCG)添加量和不同pH值下,从大豆分离蛋白酶解液(soy protein hydrolysates,SPHs)中回收多肽,并对多肽的回收率、二级结构含量变化、表面疏水性、抗氧化活性进行表征。结果表明,增加酶解时间可提高中间肽含量。EGCG的加入提高了SPHs的回收率,SPHs的量与EGCG的添加量呈正相关;随着酶解时间的延长,肽回收率先降低后升高,且在30 min时回收率最高,表明EGCG可能与分子质量5~10 kDa的肽更容易生成沉淀。EGCG的加入在一定程度上改变了蛋白肽的二级结构,蛋白肽被拉伸;EGCG的加入会降低蛋白肽的表面疏水性,提高抗氧化活性。该研究通过构建并分析SPHs-EGCG的结构功能及对肽回收率的影响,为EGCG从SPHs中回收多肽提供了参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王佳悦
董亚博
付元涛
兰天
隋晓楠
王欢
江连洲
关键词:  表没食子儿茶素-3-没食子酸酯  大豆多肽  肽回收率  表面疏水性  抗氧化活性    
Abstract: The recovery of peptides from soy protein hydrolysates (SPHs) under different epigallocatechin-3-gallate (EGCG) concentrations and pH values were studied. The recovery rate of the peptide, the change of the secondary structure content, the surface hydrophobicity and the antioxidant activity were characterized. The results showed that increasing the enzymatic hydrolysis time could increase the intermediate peptide content. And the addition of EGCG also increased the recovery rate of SPHs. In addition, the amount of SPHs was positively correlated with the concentration of EGCG. With the increase of enzymatic hydrolysis time, the recovery rate of the peptide first tend to decrease and then increase, and the recovery rate was the highest at 30 min. It was indicated that EGCG might be easier to precipitate with peptides with a molecular weight of 5-10 kDa. To a certain extent, the addition of EGCG changed the secondary structure of the protein peptide, and the protein peptide was stretched. The addition of EGCG would also reduce the surface hydrophobicity of the SPHs and increase the antioxidant activity. This study provided a reference for EGCG to recover peptides from SPHs by constructing and analyzing the structure and function of SPHs-EGCG and its influence on the recovery rate of peptides.
Key words:  epigallocatechin-3-gallate    soy peptides    peptide recovery rate    surface hydrophobicity    antioxidant activity
收稿日期:  2021-03-23      修回日期:  2021-04-15                发布日期:  2021-09-10      期的出版日期:  2021-08-25
基金资助: 山东省重点研发计划(重大科技创新工程)(2019JZZY010722);黑龙江省“百千万”工程科技重大专项项目(2019ZX08B01)
作者简介:  硕士研究生(江连洲教授为通讯作者,E-mail:jlzname@163.com)
引用本文:    
王佳悦,董亚博,付元涛,等. 利用表没食子儿茶素-3-没食子酸酯回收大豆蛋白酶解液中多肽的研究[J]. 食品与发酵工业, 2021, 47(16): 78-83.
WANG Jiayue,DONG Yabo,FU Yuantao,et al. Study on recovery of peptides from soybean proteolysis solution with epigallocatechin-3-gallate[J]. Food and Fermentation Industries, 2021, 47(16): 78-83.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.027475  或          http://sf1970.cnif.cn/CN/Y2021/V47/I16/78
[1] HU H, WU J H, LI-CHAN E C Y, et al.Effects of ultrasound on structural and physical properties of soy protein isolate (SPI) dispersions[J].Food Hydrocolloids, 2013, 30(2):647-655.
[2] LAMSAL B, JUNG S, JOHNSON L.Rheological properties of soy protein hydrolysates obtained from limited enzymatic hydrolysis[J].LWT-Food Science and Technology, 2007, 40(7):1 215-1 223.
[3] ZHANG Q Z, TONG X H, SUI X N, et al.Antioxidant activity and protective effects of alcalase-hydrolyzed soybean hydrolysate in human intestinal epithelial Caco-2 cells[J].Food Research International, 2018, 111:256-264.
[4] ZHANG Y H, SUN W Z, ZHAO M M, et al.Improvement of the ACE-inhibitory and DPPH radical scavenging activities of soya protein hydrolysates through pepsin pretreatment[J].International Journal of Food Science & Technology, 2015, 50(10):2 175-2 182.
[5] COSCUETA E R, CAMPOS D A, OSÓRIO H, et al.Enzymatic soy protein hydrolysis:A tool for biofunctional food ingredient production[J].Food Chemistry:X, 2019, 1:100006.
[6] SINGH B P, VIJ S, HATI S.Functional significance of bioactive peptides derived from soybean[J].Peptides, 2014, 54:171-179.
[7] ZHAO G L, LIU Y, ZHAO M M, et al.Enzymatic hydrolysis and their effects on conformational and functional properties of peanut protein isolate[J].Food Chemistry, 2011, 127(4):1 438-1 443.
[8] PARK S Y, LEE J S, BAEK H H, et al.Purification and characterization of antioxidant peptides from soy protein hydrolysate[J].Journal of Food Biochemistry, 2010, 34:120-132.
[9] PARK S Y, AHN C B, JE J Y.Antioxidant and anti-inflammatory activities of protein hydrolysates from Mytilus edulis and ultrafiltration membrane fractions[J].Journal of Food Biochemistry, 2014, 38(5):460-468.
[10] ZHANG Q Z, TONG X H, QI B K, et al.Changes in antioxidant activity of Alcalase-hydrolyzed soybean hydrolysate under simulated gastrointestinal digestion and transepithelial transport[J].Journal of Functional Foods, 2018, 42:298-305.
[11] BEERMANN C, EULER M, HERZBERG J, et al.Anti-oxidative capacity of enzymatically released peptides from soybean protein isolate[J].European Food Research and Technology, 2009, 229(4):637-644.
[12] XU Z J, HAO N R, LI L W, et al.Valorization of soy whey wastewater:How epigallocatechin-3-gallate regulates protein precipitation[J].ACS Sustainable Chemistry & Engineering, 2019, 7(18):15 504-15 513.
[13] ZHOU S D, LIN Y F, XU X, et al.Effect of non-covalent and covalent complexation of (-)-epigallocatechin gallate with soybean protein isolate on protein structure and in vitro digestion characteristics[J].Food Chemistry, 2020, 309:125718.
[14] DEKA A, VITA J A.Tea and cardiovascular disease[J].Pharmacological Research, 2011, 64(2):136-145.
[15] BOSE A.Interaction of tea polyphenols with serum albumins:A fluorescence spectroscopic analysis[J].Journal of Luminescence, 2016, 169:220-226.
[16] WEI Z H, YANG W, FAN R, et al.Evaluation of structural and functional properties of protein-EGCG complexes and their ability of stabilizing a model β-carotene emulsion[J].Food Hydrocolloids, 2015, 45:337-350.
[17] DING J, XU Z J, QI B K, et al.Physicochemical and oxidative stability of a soybean oleosome-based emulsion and its in vitro digestive fate as affected by (-)-epigallocatechin-3-gallate[J].Food & Function, 2018, 9(12):6 146-6 154.
[18] KOSIN′SKA-CAGNAZZO A, HEEGER A, UDRISARD I, et al.Phenolic compounds of grape stems and their capacity to precipitate proteins from model wine[J].Journal of Food Science and Technology, 2020, 57(2):435-443.
[19] CHUNG S Y, CHAMPAGNE E T.Reducing the allergenic capacity of peanut extracts and liquid peanut butter by phenolic compounds[J].Food Chemistry, 2009, 115(4):1 345-1 349.
[20] CANON F, PATÉ F, CHEYNIER V, et al.Aggregation of the salivary proline-rich protein IB5 in the presence of the tannin EgCG[J].Langmuir, 2013, 29(6):1 926-1 937.
[21] JÖBSTL E, O'CONNELL J, FAIRCLOUGH J P A, et al.Molecular model for astringency produced by polyphenol/protein interactions[J].Biomacromolecules, 2004, 5(3):942-949.
[22] ZHANG Y, CHEN S, QI B K, et al.Complexation of thermally-denatured soybean protein isolate with anthocyanins and its effect on the protein structure and in vitro digestibility[J].Food Research International, 2018, 106:619-625.
[23] JIANG L Z, LIU Y J, LI L, et al.Covalent conjugates of anthocyanins to soy protein:Unravelling their structure features and in vitro gastrointestinal digestion fate[J].Food Research International, 2019, 120:603-609.
[24] JU M N, ZHU G, HUANG G, et al.A novel pickering emulsion produced using soy protein-anthocyanin complex nanoparticles[J].Food Hydrocolloids, 2020, 99:105329.
[25] CHABANON G, CHEVALOT I, FRAMBOISIER X, et al.Hydrolysis of rapeseed protein isolates:Kinetics, characterization and functional properties of hydrolysates[J].Process Biochemistry, 2007, 42(10):1 419-1 428.
[26] MOLINA ORTIZ S E, CRISTINA AN M.Analysis of products, mechanisms of reaction, and some functional properties of soy protein hydrolysates[J].Journal of the American Oil Chemists′ Society, 2000, 77(12):1 293-1 301.
[27] CHARLTON A J, BAXTER N J, KHAN M L, et al.Polyphenol/peptide binding and precipitation[J].Journal of Agricultural and Food Chemistry, 2002, 50(6):1 593-1 601.
[28] RAWEL H M, MEIDTNER K, KROLL J.Binding of selected phenolic compounds to proteins[J].Journal of Agricultural and Food Chemistry, 2005, 53(10):4 228-4 235.
[29] KANAKIS C, HASNI I, BOURASSA P, et al.Milk β-lactoglobulin complexes with tea polyphenols[J].Food Chemistry, 2011, 127(3):1 046-1 055.
[30] CHANDRAPALA J, ZISU B, PALMER M, et al.Effects of ultrasound on the thermal and structural characteristics of proteins in reconstituted whey protein concentrate[J].Ultrasonics Sonochemistry, 2011, 18(5):951-957.
[31] LI D, ZHAO Y, WANG X, et al.Effects of (+)-catechin on a rice bran protein oil-in-water emulsion:Droplet size, zeta-potential, emulsifying properties, and rheological behavior[J].Food Hydrocolloids, 2020, 98:105306.
[32] JIANG J, CHEN J, XIONG Y L.Structural and emulsifying properties of soy protein isolate subjected to acid and alkaline pH-shifting processes[J].Journal of Agricultural and Food Chemistry, 2009, 57(16):7 576-7 583.
[33] ZHANG Y H, ZHAO M M, NING Z X, et al.Development of a sono-assembled, bifunctional soy peptide nanoparticle for cellular delivery of hydrophobic active cargoes[J].Journal of Agricultural and Food Chemistry, 2018, 66(16):4 208-4 218.
[34] TIAN R, FENG J R, HUANG G, et al.Ultrasound driven conformational and physicochemical changes of soy protein hydrolysates[J].Ultrasonics Sonochemistry, 2020, 68:105202.
[35] YAN S Z, XU J W, ZHANG X Y, et al.Effect of pH-shifting treatment on the structural and functional properties of soybean protein isolate and its interactions with (-)-epigallocatechin-3-gallate[J].Process Biochemistry, 2021, 101:190-198.
[1] 冯艳钰, 臧延青. 三种小麦麸皮总黄酮的体外抗氧化活性[J]. 食品与发酵工业, 2021, 47(9): 16-24.
[2] 牛娜娜, 沙如意, 杨陈铭, 王珍珍, 茹语婷, 戴静, 韩洪庚, 张黎明, 毛建卫. 预处理工艺对黑蒜功能性成分、抗氧化活性影响及相关性研究[J]. 食品与发酵工业, 2021, 47(8): 67-75.
[3] 王子涵, 向敏, 徐茂, 蒋和体. 响应面优化黑果腺肋花楸汁澄清工艺及其抗氧化活性评价[J]. 食品与发酵工业, 2021, 47(8): 189-196.
[4] 顾欣, 高涛, 刘梦雅, 丛之慧, 张诚雅, 肖乐艳, 李迪, 胡景涛. 梁平柚柚皮多糖的提取、结构解析及抗氧化能力研究[J]. 食品与发酵工业, 2021, 47(7): 137-145.
[5] 张耀, 张露, 刘俊, 涂宗财. 青鱼肉活性肽的制备及其抗肿瘤活性研究[J]. 食品与发酵工业, 2021, 47(5): 35-42.
[6] 匡文玲, 李佳, 韩林, 蒋永波, 邱玲岚, 汪开拓, 王敏. 柠檬果汁主要水溶性成分分析及对高脂诱导L-02肝细胞氧化损伤影响的研究[J]. 食品与发酵工业, 2021, 47(5): 43-47.
[7] 邓永平, 车鑫, 艾瑞波, 刘晓兰, 辛嘉英, 王晓杰. 好食脉孢霉发酵产类胡萝卜素的鉴定、抗氧化性及稳定性研究[J]. 食品与发酵工业, 2021, 47(4): 15-20.
[8] 陆娟, 谢东雪, 贺柳洋, 王月, 郑志艳. 洋甘菊多糖的分离纯化、性质结构及抗氧化活性分析[J]. 食品与发酵工业, 2021, 47(3): 72-78.
[9] 谢三都, 陈惠卿, 庄培荣, 洪家榕, 游利杰. 冲泡型灵芝白茶的制备及其茶汤的抗氧化活性[J]. 食品与发酵工业, 2021, 47(3): 135-142.
[10] 彭松林, 潘成磊, 康梦瑶, 李懿璇, 赵紫悦, 郑仁兵, 尚永彪. 卤烤鸭中类黑精的提取及其抗氧化活性与化学稳定性研究[J]. 食品与发酵工业, 2021, 47(2): 22-29.
[11] 江飞凤, 谭晓辉, 胡鹏刚, 潘雪梅, 闫锦. 超声-微波协同提取柚子皮多糖工艺优化及单糖组成、结构和抗氧化活性分析[J]. 食品与发酵工业, 2021, 47(2): 196-204.
[12] 董艺凝, 李煜, 黄开军, 贾胜, 宋之文. 富含黄酮低度滁菊浸泡酒研制及品质分析[J]. 食品与发酵工业, 2021, 47(2): 220-225.
[13] 周洋, 杨得坡, 钱纯果, 何翠淇, 钟镜堂, 徐新军, 赵志敏. 阳春砂根茎多糖分离纯化、结构表征及抗氧化活性[J]. 食品与发酵工业, 2021, 47(16): 52-58.
[14] 洪森辉, 黄冰晴, 张晶怡, 费鹏. 越橘花色苷的酰化修饰及其稳定性改善研究[J]. 食品与发酵工业, 2021, 47(16): 84-89.
[15] 戴志伟, 张玥, 伊力夏提·艾热提, 严宏孟, 殷思思, 李芳, 孔令明. 四种乳酸菌发酵西梅浆的特性研究[J]. 食品与发酵工业, 2021, 47(15): 220-227.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn