Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (16): 239-246    DOI: 10.13995/j.cnki.11-1802/ts.027579
  分析与检测 本期目录 | 过刊浏览 | 高级检索 |
曲霉型豆豉快速发酵工艺生产过程中的挥发性成分对比分析
文鹤1, 查双龙1, 胡祥飞2, 张盼文1, 杨慧林1, 王筱兰1*
1(江西师范大学 生命科学学院,江西 南昌,330022)
2(食品科学与技术国家重点实验室(南昌大学),江西 南昌,330027)
Comparative analysis of volatile components in the rapid fermentation process of Aspergillus-type Douchi
WEN He1, ZHA Shuanglong1, HU Xiangfei2, ZHANG Panwen1, YANG Huilin1, WANG Xiaolan1*
1(College of Life Science, Jiangxi Normal University, Nanchang 330022, China)
2(State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330027, China)
下载:  HTML  PDF (1717KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 豆豉是中国传统发酵食品,为探究曲霉型豆豉快速发酵工艺生产过程中挥发性成分的变化,采用固相微萃取-气相色谱质谱联用技术(solid phase micro-extraction-GC-MS,SPME-GC-MS)对蒸煮、制曲、洗曲及后酵4阶段挥发性成分进行检测。结果显示,生产过程中挥发性成分包括酯、酮、酚、醇、醛、酸、吡嗪、呋喃、芳香族等九大类化合物;蒸煮阶段共检测出67种挥发性成分,主要包括醇、酚和醛等,挥发性成分含量较高的为1-辛烯-3-醇、正己醇、甲基麦芽酚,其中1-辛烯-3-醇是豆腥味的主要来源;制曲阶段共检测出70种挥发性成分,主要包括醇、芳香族、酸和呋喃等,挥发性成分含量较高的为1-辛烯-3-醇、苯乙烯、2-正戊基呋喃,并发生了轻度的美拉德反应;洗曲阶段共检测出67种挥发性成分,主要包括酸、醇、芳香族和呋喃等,大量1-辛烯-3-醇被水洗掉;后酵阶段共检测出81种挥发性成分,主要包括醛、酸、酚和吡嗪等,该阶段美拉德反应剧烈,苯甲醛、可卡醛、愈创木酚、2,5-二甲基吡嗪、2-甲基吡嗪等挥发性成分大量形成。研究表明,快速发酵工艺曲霉型豆豉生产过程中,无论是从挥发性成分的种类还是从含量来看,在制曲阶段仅形成少量挥发性成分,后酵阶段是豆豉挥发性风味物质形成的主要阶段。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
文鹤
查双龙
胡祥飞
张盼文
杨慧林
王筱兰
关键词:  固相微萃取-气相色谱质谱联用技术  曲霉型豆豉  快速发酵工艺  挥发性成分  蒸煮  制曲  洗曲  后酵    
Abstract: Aspergillus-type Douchi is a traditional Chinese fermented food. In order to explore the changes of volatile components in the rapid fermentation process of Aspergillus-type Douchi, gas chromatography-mass spectrometry coupled with solid phase micro-extraction (SPME-GC-MS) was used to detect the volatile components in cooking, making, washing and post-fermentation. The volatile components in the production process included nine kinds of compounds, i.e. esters, ketones, phenols, alcohols, aldehydes, acids, pyrazines, furans and aromatics groups. Sixty-seven volatile components were detected in the cooking stage, mainly including alcohols, phenols and aldehydes. The highest volatile components were 1-octene-3-ol, n-hexanol and maltol, among which 1-octene-3-ol was the main source of bean odor. Seventy volatile components were detected in the making stage, mainly including alcohols, aromatic groups, acids and furans. The higher volatile components were 1-octene-3-alcohol, styrene, 2-n-pentylfuran, while mild Maillard reaction occurred. Sixty-seven volatile components were detected in the washing stage, mainly including acids, alcohols, aromatics and furans. A large number of 1-octene-3-ol were washed away. Eight-one volatile components were detected in the post-fermentation stage, mainly including aldehydes, acids, phenols and pyrazines. At this stage, the Maillard reaction was intense, large amount of benzaldehyde, cocal, guaiacol, 2, 5-dimethylpyrazines, 2-methylpyrazines and other volatile components were produced. In the production process of Aspergillus-type Douchi with rapid fermentation, the production of volatile components was limited in the making stage, and the post-fermentation stage was the main stage of the formation of volatile flavor substances in Aspergillus-type Douchi.
Key words:  SPME-GC-MS    Aspergillus-type Douchi    rapid fermentation process    volatile compounds    cooking    making    washing    post fermentation
收稿日期:  2021-04-01      修回日期:  2021-05-05                发布日期:  2021-09-10      期的出版日期:  2021-08-25
基金资助: 国家自然科学基金项目(31760449);江西省自然科学基金青年基金项目(20181BAB214003)
作者简介:  硕士研究生(王筱兰教授为通讯作者,E-mail:xlwang08@aliyun.com)
引用本文:    
文鹤,查双龙,胡祥飞,等. 曲霉型豆豉快速发酵工艺生产过程中的挥发性成分对比分析[J]. 食品与发酵工业, 2021, 47(16): 239-246.
WEN He,ZHA Shuanglong,HU Xiangfei,et al. Comparative analysis of volatile components in the rapid fermentation process of Aspergillus-type Douchi[J]. Food and Fermentation Industries, 2021, 47(16): 239-246.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.027579  或          http://sf1970.cnif.cn/CN/Y2021/V47/I16/239
[1] DING Y B, LI X Y, KAN J Q.Isolation and identification of flavor peptides from Douchi (traditional Chinese soybean food)[J].International Journal of Food Properties, 2017, 20(2):1 982-1 994.
[2] YANG H L, YANG L, ZHANG J, et al.Exploring functional core bacteria in fermentation of a traditional Chinese food, Aspergillus-type Douchi[J].PLoS One, 2019, 14(12):e0 226 965.
[3] 谢艳华, 谢靓, 李跑, 等.GC-MS分析毛霉型、细菌型、曲霉型豆豉中脂肪酸组成[J].中国油脂, 2017, 42(7):115-119;123.
XIE Y H, XIE J, LI P, et al.GC-MS analysis of fatty acid composition in Mucor-type, bacterial-type and Aspergillus-type Douchi[J].China Oils and Fats, 2017, 42(7):115-119;123.
[4] 陈怡, 刘洋, 蒋立文, 等.浏阳豆豉发酵过程中抗氧化成分及活性变化研究[J].食品工业科技, 2020, 41(19):273-278.
CHEN Y, LIU Y, JIANG L W, et al.Study on antioxidant components and activity changes of Liuyang Douchi during fermentation[J].Science and Technology of Food Industry, 2020, 41(19):273-278.
[5] 杨洋, 索化夷, 王洪伟.Flash Profile法在豆豉感官评价中的应用[J].中国酿造, 2020, 39(6):181-184.
YANG Y, SUO H Y, WANG H W.Application of Flash Profile method in sensory evaluation of Douchi[J].China Brewing, 2020, 39(6):181-184.
[6] 李金林, 万亮, 王维亚, 等.基于SPME-GC-MS 技术分析曲霉型豆豉生产过程中的挥发性成分变化[J].食品与发酵工业, 2020, 46(15):252-257.
LI J L, WAN L, WANG W Y, et al.Change of volatile compounds in Aspergillus-type Douchi during processing evaluated by SPME-GC-MS[J].Food and Fermentation Industries, 2020, 46(15):252-257.
[7] 邵良伟, 邹强, 张琼, 等.潼川豆豉制曲过程中理化指标变化规律[J].中国调味品, 2019, 44(10):14-17;25.
SHAO L W, ZOU Q, ZHANG Q, et al.Changes of physicochemical indexes in koji-making process of Tongchuan fermented soya beans[J].China Condiment, 2019, 44(10):14-17;25.
[8] 李薇, 罗沈斌, 邱泽瑞, 等.永川毛霉型豆豉传统发酵过程中微生物群落结构及动态演替规律[J].食品与发酵工业, 2020, 46(23):60-67.
LI W, LUO S B, QIU Z R, et al.Microbial community structure and dynamic succession in traditional fermentation of Mucor-type Yongchuan Douchi[J].Food and Fermentation Industries, 2020, 46(23):60-67.
[9] ZHANG W B, LUO Q Q, ZHU Y, et al.Correction: Microbial diversity in two traditional bacterial douchi from Gansu province in northwest China using Illumina sequencing[J].PLoS One, 2018, 13(5):e0 197 527.
[10] HU H P, HAO J X, CHENG Y Q, et al.Effect of fermented rice culture on the microbiological, biochemical and sensory characteristics of low-salt Douchi, a traditional Chinese fermented soybean condiment[J].International Journal of Food Science and Technology, 2012, 47(4):689-695.
[11] 汤启成, 曾凡玉, 汪学荣, 等.毛霉型豆豉与曲霉型豆豉挥发性成分的GC-MS分析[J].食品工业, 2016, 37(10):274-278.
TANG Q C, ZENG F Y, WANG X R, et al.GC-MS analysis of volatile components in Mucor-fermented soybean and Aspergillus-fermented soybean[J].The Food Industry, 2016, 37(10):274-278.
[12] 蒋立文, 谢艳华, 李跑, 等.HS-SPME/GC-MS和电子感官技术分析毛霉型豆豉发酵过程中风味品质[J].核农学报, 2020, 34(7):1 497-1 506.
JIANG L W, XIE Y H, LI P, et al.Analysis of the volatile flavor components and quality of Mucor-type Douchi with HS-SPME/GC-MS method and electric-sense technology[J].Journal of Nuclear Agricultural Sciences, 2020, 34(7):1 497-1 506.
[13] 韩帅, 高婷婷, 刘玉平, 等.SDE-GC-MS分析浏阳老一品香豆豉的挥发性成分[J].食品与发酵工业, 2013, 39(8):192-197.
HAN S, GAO T T, LIU Y P, et al.Extraction and analysis of volatile flavor constituents in Laoyipinxiang Douchi by SDE-GC-MS[J].Food and Fermentation Industries, 2013, 39(8):192-197.
[14] LI J L, TU Z C, SHA X M, et al.Effect of frying on fatty acid profile, free amino acids and volatile compounds of grass carp (Ctenopharyngodon idellus) fillets[J].Journal of Food Processing and Preservation, 2017, 41(4):e13 088.
[15] LI J L, TU Z C, ZHANG L, et al.Characterization of volatile compounds in grass carp (Ctenopharyngodon idellus) soup cooked using a traditional Chinese method by GC-MS[J].Journal of Food Processing and Preservation, 2017, 41(4):e12 995.
[16] LI J L, TU Z C, ZHANG L, et al.The effect of ginger and garlic addition during cooking on the volatile profile of grass carp (Ctenopharyngodon idella) soup[J].Journal of Food Science and Technology, 2016, 53(8):3 253-3 270.
[17] 李宝丽, 朱宇轩, 邓建玲, 等.基于GC-MS指纹图谱和化学计量分析鉴别预包装纯葡萄汁及葡萄汁制品[J].食品科学, 2015, 36(8):156-161.
LI B L, ZHU Y X, DENG J L, et al.Discrimination of prepackaged pure grape juice and its commercial products based on gas chromatography-mass spectrometry fingerprints and chemometrics methods[J].Food Science, 2015, 36(8):156-161.
[18] YANG L, YANG H L, TU Z C, et al.High-throughput sequencing of microbial community diversity and dynamics during Douchi fermentation[J].PLoS One, 2016, 11(12):e0 168 166.
[19] KIM I M R, KAWAMURA Y, LEE C H.Isolation and identification of bitter peptides of tryptic hydrolysate of soybean 11S glycinin by reverse-phase high-performance liquid chromatography[J].Journal of Food Science, 2003, 68(8):2 416-2 422.
[20] 赵文鹏. 曲霉型豆豉发酵过程中品质特性及微生物变化规律研究[D].南昌:江西师范大学, 2020.
ZHAO W P.Quality characteristics and microbial community evolution of Aspergillus-type Douchi during fermentation[D].Nanchang:Jiangxi Normal University, 2020.
[21] 范琳, 陶湘林, 欧阳晶, 等.曲霉型豆豉后发酵过程中挥发性成分的动态变化[J].食品科学, 2012, 33(22):274-277.
FAN L, TAO X L, OUYANG J, et al.Dynamic changes in volatile components in Aspergillus-type Douchi during post-fermentation[J].Food Science, 2012, 33(22):274-277.
[22] 何桂强, 梁如, 黄钧, 等.毛霉型和曲霉型豆豉特征风味的研究[J].食品科技, 2016, 41(4):260-265.
HE G Q, LIANG R, HUANG J, et al.Characteristic flavour of Mucor-type and Aspergillus-type Douchi[J].Food Science and Technology, 2016, 41(4):260-265.
[23] 管泳宇. 曲霉型豆豉发酵分析及人工接种发酵研究[D].扬州:扬州大学, 2013.
GUAN Y Y.Fermentation analysis of Aspergillus-Type Douchi and study on artificial inoculation fermentation[D].Yangzhou:Yangzhou University, 2013.
[24] 赵文鹏, 李浩, 杨慧林, 等.曲霉型豆豉发酵阶段细菌群落的演替及其与环境因子的关系[J].食品科学, 2021, 42(4):138-144.
ZHAO W P, LI H, YANG H L, et al.Bacterial community succession during the fermentation of Aspergillus-type Douchi, a traditional Chinese fermented soybean product, and its relation with environmental factors[J].Food Science, 2021, 42(4):138-144.
[25] 李浩, 梁琦, 杨慧林, 等.快速工艺与传统工艺下曲霉型豆豉发酵过程中细菌演替的比较[J].食品与发酵工业, 2020, 46(23):52-59.
LI H, LIANG Q, YANG H L, et al.Bacterial succession of Aspergillus-type Douchi during rapid and traditional fermentation[J].Food and Fermentation Industries, 2020, 46(23):52-59.
[1] 王迪, 王智荣, 陈湑慧, 宋军, 孔祥兵, 陈本开, 阚建全. 不同后发酵温度下曲霉型豆豉的氨基酸态氮生成动力学及品质变化研究[J]. 食品与发酵工业, 2021, 47(9): 91-99.
[2] 黄丕苗, 王智荣, 陈湑慧, 杨兵, 施月, 阚建全. 迷迭香提取物对白鲢鱼肉腥味的影响及其脱腥条件优化[J]. 食品与发酵工业, 2021, 47(6): 176-183.
[3] 曹桢, 陈善敏, 黄小雨, 蒋和体. 紫薯醋发酵工艺优化及品质分析[J]. 食品与发酵工业, 2021, 47(4): 195-201.
[4] 李婷婷, 黄名正, 唐维媛, 李钦炀, 娄康宁. 刺梨汁中挥发性成分测定及其呈香贡献分析[J]. 食品与发酵工业, 2021, 47(4): 237-246.
[5] 文鹤, 刘江崟, 胡祥飞, 李浩, 杨慧林, 王筱兰. 一株产香酵母Trichomonascus ciferrii的分离鉴定及其纯种发酵豆豉的挥发性成分分析[J]. 食品与发酵工业, 2021, 47(16): 152-158.
[6] 赵淑娜, 焦爱权, 杨月月, 吴文琪, 金征宇. 加酶挤压对大麦粉理化性质及全大麦啤酒酿造特性的影响[J]. 食品与发酵工业, 2021, 47(15): 63-69.
[7] 高银涛, 何璇, 余博文, 蔡丛菊, 陈建新, 丁重阳. 白酒固态双边发酵糖化机理及其对发酵过程的影响[J]. 食品与发酵工业, 2021, 47(13): 92-97.
[8] 杨青青, 王智荣, 彭林, 陈巧莉, 闻乐嫣, 郭泽航, 阚建全. 基于代谢组学分析两种产地青花椒中非挥发性成分的差异[J]. 食品与发酵工业, 2021, 47(12): 216-223.
[9] 马瑞娟, 林煌华, 谢友坪, 陈剑锋. 固定化酶制备鳀鱼蒸煮液蛋白肽及其性能表征[J]. 食品与发酵工业, 2020, 46(9): 122-127.
[10] 汪楠, 黄山, 张月, 张甫生, 郑炯. 高温蒸煮协同纤维素酶改性竹笋膳食纤维[J]. 食品与发酵工业, 2020, 46(4): 13-18.
[11] 李冬龙, 李拂晓, 葛艳静, 谢彩锋, 刘继栋, 杭方学. 二次回归正交旋转组合设计优化富含γ-氨基丁酸豆酱制曲工艺[J]. 食品与发酵工业, 2020, 46(24): 159-166.
[12] 李浩, 梁琦, 杨慧林, 文鹤, 王筱兰. 快速工艺与传统工艺下曲霉型豆豉发酵过程中细菌演替的比较[J]. 食品与发酵工业, 2020, 46(23): 52-59.
[13] 李薇, 罗沈斌, 邱泽瑞, 赖登磊, 王洪伟, 索化夷. 永川毛霉型豆豉传统发酵过程中微生物群落结构及动态演替规律[J]. 食品与发酵工业, 2020, 46(23): 60-67.
[14] 王桃红, 崔宗岩, 徐立英, 张少博, 姜晓林, 贾光群. 麦卢卡蜂蜜挥发性成分的测定及与抗菌性相关性分析[J]. 食品与发酵工业, 2020, 46(19): 228-236.
[15] 刘方芳, 卢祺, 刘津延, 包建强. 响应面优化美国大口胭脂鱼脱腥条件[J]. 食品与发酵工业, 2020, 46(18): 167-172.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn