Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (24): 308-313    DOI: 10.13995/j.cnki.11-1802/ts.027653
  综述与专题评论 本期目录 | 过刊浏览 | 高级检索 |
天然高分子乳化特性研究进展
邓伶俐1,2,3*, 罗仕园1, 谭林立3,4, 安建辉1,2,3
1(湖北民族大学 生物科学与技术学院,湖北 恩施,445000)
2(生物资源保护与利用湖北省重点实验室(湖北民族大学),湖北 恩施,445000)
3(超轻弹性体材料绿色制造民委重点实验室(湖北民族大学),湖北 恩施,445000)
4(湖北民族大学 新材料与机电工程学院,湖北 恩施,445000)
Research progress of the emulsifying properties of biopolymer
DENG Lingli1,2,3*, LUO Shiyuan1, TAN Linli3,4, AN Jianhui1,2,3
1(College of Biological Science and Technology, Hubei Minzu University, Enshi 445000, China)
2(Hubei Key Laboratory of Biological Resources Protection and Utilization (Hubei Minzu University), Enshi 445000, China)
3(Key Laboratory of Green Manufacturing of Super-light Elastomer Materials of State Ethnic Affairs Commission (Hubei Minzu University), Enshi 445000, China)
4(School of Advanced Materials and Mechatronic Engineering, Hubei Minzu University, Enshi 445000, China)
下载:  HTML  PDF (4600KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 天然高分子因具有良好乳化特性被应用于构建食品乳液体系及改善食品体系乳化稳定性。该文首先简要介绍了传统乳液和一些新型乳液的结构类型,然后针对明胶、玉米醇溶蛋白、乳清分离蛋白和酪蛋白等蛋白类天然高分子,阿拉伯胶、果胶、瓜尔豆胶、微晶纤维素、淀粉等多糖类天然高分子进行了详细介绍,主要涉及传统乳液及Pickering乳液和乳液凝胶等新型乳液。同时,对蛋白-多糖美拉德反应复合物形成过程及近年蛋白-多糖美拉德反应复合物乳液体系研究进行了简要介绍。最后结合分析了天然高分子作为乳化剂在食品领域的发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邓伶俐
罗仕园
谭林立
安建辉
关键词:  天然高分子  乳液稳定性  蛋白  多糖  美拉德反应    
Abstract: Biopolymers has been applied in the food industry for emulsifying and improved emulsion stability. The structure of the traditional emulsions and typically sophisticated emulsions were illustrated and the mechanism of emulsion instability was discussed. Protein-based biopolymers (gelatin, zein, whey protein, casein) and polysaccharides-based biopolymers (gum Arabic, pectin, guar gum, microcrystalline cellulose, starch) as emulsifiers were reviewed. Besides, the formation of protein-polysaccharides complex and related researches about the emulsion preparation and stability were introduced. Furthermore, the present review explores some potential applications in relation to the biopolymer emulsifiers in food industry.
Key words:  biopolymer    emulsion stability    protein    polysaccharide    Maillard reaction
收稿日期:  2021-04-12      修回日期:  2021-04-19           出版日期:  2021-12-25      发布日期:  2022-01-21      期的出版日期:  2021-12-25
基金资助: 湖北省自然科学基金(2020CFB204);湖北省重点研发计划项目(2020BAB078);湖北民族大学高水平科研成果校内培育项目(PY20017);生物保护与利用湖北省重点实验室开放基金项目(PT012002);超轻弹性体材料绿色制造民委重点实验室开放基金项目(PT092010)
作者简介:  博士,讲师(本文通讯作者,E-mail:lingli0312@gmail.com)
引用本文:    
邓伶俐,罗仕园,谭林立,等. 天然高分子乳化特性研究进展[J]. 食品与发酵工业, 2021, 47(24): 308-313.
DENG Lingli,LUO Shiyuan,TAN Linli,et al. Research progress of the emulsifying properties of biopolymer[J]. Food and Fermentation Industries, 2021, 47(24): 308-313.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.027653  或          http://sf1970.cnif.cn/CN/Y2021/V47/I24/308
[1] BENICHOU A, ASERIN A, GARTI N.W/O/W double emulsions stabilized with WPI-polysaccharide complexes[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2007, 294(1-3):20-32.
[2] SURH J, DECKER E A, MCCLEMENTS D J.Properties and stability of oil-in-water emulsions stabilized by fish gelatin [J].Food Hydrocolloids, 2006, 20(5):596-606.
[3] SURH J, GU Y S, DECKER E A, et al.Influence of environmental stresses on stability of O/W emulsions containing cationic droplets stabilized by SDS-F fish gelatin membranes [J].Journal of Agricultural and Food Chemistry, 2005, 53(10):4 236-4 244.
[4] TAHERIAN A R, BRITTEN M, SABIK H, et al.Ability of whey protein isolate and/or fish gelatin to inhibit physical separation and lipid oxidation in fish oil-in-water beverage emulsion [J].Food Hydrocolloids, 2011, 25(5):868-878.
[5] ZEEB B, FISCHER L, WEISS J.Cross-linking of interfacial layers affects the salt and temperature stability of multilayered emulsions consisting of fish gelatin and sugar beet pectin [J].Journal of Agricultural and Food Chemistry, 2011, 59(19):10 546-10 555.
[6] ANVARI M, JOYNER H S.Effect of fish gelatin-gum Arabic interactions on structural and functional properties of concentrated emulsions [J].Food Research International, 2017, 102:1-7.
[7] DE FOLTER J W J, VAN RUIJVEN M W M, VELIKOV K P.Oil-in-water Pickering emulsions stabilized by colloidal particles from the water-insoluble protein zein [J].Soft Matter, 2012, 8(25):6 807-6 815.
[8] ZOU Y, GUO J, YIN S W, et al.Pickering emulsion gels prepared by hydrogen-bonded zein/tannic acid complex colloidal particles [J].Journal of Agricultural and Food Chemistry, 2015, 63(33):7 405-7 414.
[9] ZHU Q M, LU H Q, ZHU J Y, et al.Development and characterization of Pickering emulsion stabilized by zein/corn fiber gum (CFG) complex colloidal particles [J].Food Hydrocolloids, 2019, 91:204-213.
[10] ZOU Y, YANG X Q, SCHOLTEN E.Tuning particle properties to control rheological behavior of high internal phase emulsion gels stabilized by zein/tannic acid complex particles [J].Food Hydrocolloids, 2019, 89:163-170.
[11] DAI L, YANG S F, WEI Y, et al.Development of stable high internal phase emulsions by Pickering stabilization:Utilization of zein-propylene glycol alginate-rhamnolipid complex particles as colloidal emulsifiers [J].Food Chemistry, 2019, 275:246-254.
[12] LI J, XU X E, CHEN Z X, et al.Zein/gum Arabic nanoparticle-stabilized Pickering emulsion with thymol as an antibacterial delivery system [J].Carbohydrate Polymers, 2018, 200:416-426.
[13] SUN C X, GAO Y X, ZHONG Q X.Properties of ternary biopolymer nanocomplexes of zein, sodium caseinate, and propylene glycol alginate and their functions of stabilizing high internal phase pickering emulsions[J].Langmuir, 2018, 34(31):9 215-9 227.
[14] EUSTON S R, FINNIGAN S R, HIRST R L.Aggregation kinetics of heated whey protein-stabilized emulsions [J].Food Hydrocolloids, 2000, 14(2):155-161.
[15] MANTOVANI R A, CAVALLIERI Â L F, CUNHA R L.Gelation of oil-in-water emulsions stabilized by whey protein [J].Journal of Food Engineering, 2016, 175:108-116.
[16] TAN H L, MCGRATH K M.Na-caseinate/oil/water systems:Emulsion morphology diagrams [J].Journal of Colloid and Interface Science, 2012, 381(1):48-58.
[17] RADFORD S J, DICKINSON E, GOLDING M.Stability and rheology of emulsions containing sodium caseinate:combined effects of ionic calcium and alcohol [J].Journal of Colloid and Interface Science, 2004, 274(2):673-686.
[18] BALAKRISHNAN G, NGUYEN B T, SCHMITT C, et al.Heat-set emulsion gels of casein micelles in mixtures with whey protein isolate [J].Food Hydrocolloids, 2017, 73:213-221.
[19] CHEVALLIER M, RIAUBLANC A, CAUTY C, et al.The repartition of whey protein microgels and caseins between fat droplet surface and the continuous phase governs the heat stability of emulsions [J].Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2019, 563:217-225.
[20] MCINTYRE I, O SULLIVAN M, O RIORDAN D.Altering the level of calcium changes the physical properties and digestibility of casein-based emulsion gels [J].Food and Function, 2017, 8(4):1 641-1 651.
[21] DICKINSON E.Interfacial structure and stability of food emulsions as affected by protein-polysaccharide interactions [J].Soft Matter, 2008, 4(5):932-942.
[22] WILLIAMS P A, SAYERS C, VIEBKE C, et al.Elucidation of the emulsification properties of sugar beet pectin [J].Journal of Agricultural and Food Chemistry, 2005, 53(9):3 592-3 597.
[23] FUNAMI T, NAKAUMA M, ISHIHARA S, et al.Structural modifications of sugar beet pectin and the relationship of structure to functionality [J].Food Hydrocolloids, 2011, 25(2):221-229.
[24] SIEW C K, WILLIAMS P A, CUI S W, et al.Characterization of the surface-active components of sugar beet pectin and the hydrodynamic thickness of the adsorbed pectin layer [J].Journal of Agricultural and Food Chemistry, 2008, 56(17):8 111-8 120.
[25] REICHMAN D, GARTI N.Galactomannans as Emulsifiers[M].Cambridge:Elsevier,1991.
[26] GARTI N, REICHMAN D.Hydrocolloids as food emulsifiers and stabilizers [J].Food Structure, 1993, 12(4):3.
[27] GARTI N, REICHMAN D.Surface properties and emulsification activity of galactomannans [J].Food Hydrocolloids, 1994, 8(2):155-173.
[28] DE ALMEIDA PAULA D, MOTA RAMOS A, BASÍLIO DE OLIVEIRA E, et al.Increased thermal stability of anthocyanins at pH4.0 by guar gum in aqueous dispersions and in double emulsions W/O/W [J].International Journal of Biological Macromolecules, 2018, 117:665-672.
[29] RATHER S A, MASOODI F A, AKHTER R, et al.Effects of guar gum as a fat substitute in low fat meat emulsions [J].Journal of Food Processing and Preservation, 2017, 41(6):e13249.
[30] MILANI J, MALEKI G.Hydrocolloids in Food Industry[M].London:IntechOpen,2012.
[31] TUASON D C, KRAWCZYK G R, BULIGA G.Microcrystalline Cellulose [M].New York:John Wiley & Sons,2011:223.
[32] NSOR-ATINDANA J, CHEN M S, GOFF H D, et al.Functionality and nutritional aspects of microcrystalline cellulose in food [J].Carbohydrate Polymers, 2017, 172:159-174.
[33] KALASHNIKOVA I, BIZOT H, CATHALA B, et al.New Pickering emulsions stabilized by bacterial cellulose nanocrystals [J].Langmuir, 2011, 27(12):7 471-7 479.
[34] JIA X J, CHEN Y W, SHI C, et al.Rheological properties of an amorphous cellulose suspension [J].Food Hydrocolloids, 2014, 39:27-33
[35] DICKINSON E.Stabilising emulsion-based colloidal structures with mixed food ingredients [J].Journal of the Science of Food and Agriculture, 2013, 93(4):710-721.
[36] PANG B, LIU H, LIU P W, et al.Water-in-oil Pickering emulsions stabilized by stearoylated microcrystalline cellulose [J].Journal of Colloid and Interface Science, 2018, 513:629-637.
[37] LI S N, ZHANG B, TAN C P, et al.Octenylsuccinate quinoa starch granule-stabilized Pickering emulsion gels:Preparation, microstructure and gelling mechanism [J].Food Hydrocolloids, 2019, 91:40-47.
[38] LIU C C, AN F P, HE H, et al.Pickering emulsions stabilized by compound modified Areca taro (Colocasia esculenta (L.) Schott) starch with ball-milling and OSA [J].Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2018, 556:185-194.
[39] LU X X, WANG Y, LI Y Q, et al.Assembly of Pickering emulsions using milled starch particles with different amylose/amylopectin ratios [J].Food Hydrocolloids, 2018, 84:47-57.
[40] KASPRZAK M M, MACNAUGHTAN W, HARDING S, et al.Stabilisation of oil-in-water emulsions with non-chemical modified gelatinised starch [J].Food Hydrocolloids, 2018, 81:409-418.
[41] XUE F, WU Z S, TONG J R, et al.Effect of combination of high-intensity ultrasound treatment and dextran glycosylation on structural and interfacial properties of buckwheat protein isolates [J].Bioscience, Biotechnology, and Biochemistry, 2017, 81(10):1 891-1 898.
[42] CHEN L, CHEN J S, WU K G, et al.Improved low pH emulsification properties of glycated peanut protein isolate by ultrasound Maillard reaction [J].Journal of Agricultural and Food Chemistry, 2016, 64(27):5 531-5 538.
[43] LIU F G, MA C C, MCCLEMENTS D J, et al.Development of polyphenol-protein-polysaccharide ternary complexes as emulsifiers for nutraceutical emulsions:Impact on formation, stability, and bioaccessibility of β-carotene emulsions [J].Food Hydrocolloids, 2016, 61:578-588.
[44] STANIC-VUCINIC D, PRODIC I, APOSTOLOVIC D, et al.Structure and antioxidant activity of β-lactoglobulin-glycoconjugates obtained by high-intensity-ultrasound-induced Maillard reaction in aqueous model systems under neutral conditions [J].Food Chemistry, 2013, 138(1):590-599.
[45] CIRRE J, AL-ASSAF S, PHILLIPS G O, et al.Improved emulsification performance of corn fibre gum following maturation treatment [J].Food Hydrocolloids, 2014, 35:122-128.
[46] TEMENOUGA V, CHARITIDIS T, AVGIDOU M, et al.Novel emulsifiers as products from internal Maillard reactions in okra hydrocolloid mucilage [J].Food Hydrocolloids, 2016, 52:972-981.
[47] CASTEL V, RUBIOLO A C, CARRARA C R.Improvement of emulsifying properties of Brea gum by controlled thermal treatment [J].Food Hydrocolloids, 2018, 85:93-101.
[48] TAN C-T.Beverage Emulsions[M].Boca Raton:CRC Press,2004:485-524.
[49] JAVIDI F, RAZAVI S M A.New Hydrocolloids in Ice Cream[M].Chinchester:Hohn Wiley & Sons Ltd,2019.
[1] 彭颖, 潘思轶, 张德新. 柚皮苷二氢查尔酮的制备及其呈甜机理研究[J]. 食品与发酵工业, 2022, 48(1): 21-28.
[2] 张方艳, 张雯雯, 朱桂兰, 郭娜, 代欢欢, 杨俊杰. 水提法提取荸荠多糖及其体外抗氧化活性研究[J]. 食品与发酵工业, 2022, 48(1): 104-110.
[3] 张光艳, 何宏, 周晓红, 王玲丽, 刘同杰, 易华西, 公丕民, 张兰威. 不同来源牛乳酪蛋白过敏原性评价及酶解消减作用研究[J]. 食品与发酵工业, 2022, 48(1): 124-130.
[4] 李富强, 张廷新, 朱丽萍, 张楠, 颜世敢. 食物蛋白源免疫调节肽研究进展[J]. 食品与发酵工业, 2022, 48(1): 308-314.
[5] 丁文玉, 何聪芬, 刘蕾, 杨笑笑, 董坤. 草莓叶水提物对成纤维细胞合成Ⅰ型胶原及分泌骨形态发生蛋白-1的影响[J]. 食品与发酵工业, 2021, 47(9): 114-119.
[6] 李云嵌, 杨曦, 刘江, 吴娟, 王振兴, 张雪春. 超声波辅助碱法提取美藤果分离蛋白及其加工性质研究[J]. 食品与发酵工业, 2021, 47(9): 128-135.
[7] 伏慧慧, 马雪莲, 普莉雯, 王念念, 袁湖川, 黄桂芳, 王庆玲. 干腌牛肉加工过程中蛋白质变化对品质的影响[J]. 食品与发酵工业, 2021, 47(9): 223-230.
[8] 史瑛, 冯欣静, 周志磊, 姬中伟, 徐岳正, 毛健. 黄酒多糖对炎症性肠病及便秘作用机制的研究进展[J]. 食品与发酵工业, 2021, 47(9): 275-283.
[9] 刘志芳, 赵前程, 刘志东, 段蕊, 林娜, 张俊杰. 贝类多糖研究进展[J]. 食品与发酵工业, 2021, 47(9): 299-306.
[10] 赵帅东, 刘婷, 季旭, 杨梓璐, 尹轩威, 施文正, 汪立平, 宁喜斌. 利用外源蛋白酶和曲霉菌YL001加速沙丁鱼鱼露的发酵[J]. 食品与发酵工业, 2021, 47(8): 14-20.
[11] 陈晓思, 贺稚非, 王泽富, 李洪军. 过氧自由基对兔肉肌原纤维蛋白理化性质及结构的影响[J]. 食品与发酵工业, 2021, 47(8): 54-61.
[12] 贾叶, 包斌, 马明, 魏婷. 蚕蛹蛋白源肠内营养混悬剂对二型糖尿病小鼠肠道菌的影响[J]. 食品与发酵工业, 2021, 47(8): 62-66.
[13] 阮雁春, 彭旭东, 杨丹. 花生蛋白水解物对色拉酱贮藏稳定性的影响[J]. 食品与发酵工业, 2021, 47(8): 96-100.
[14] 周慧宁, 张一晟, 张惠玲, 李海峰. 一株可降解马铃薯淀粉汁水中蛋白质菌株筛选与发酵产物分析[J]. 食品与发酵工业, 2021, 47(8): 158-164.
[15] 侯钰柯, 石金明, 曾宪明, 尹家琪, 田惠鑫, 白云, 唐长波, 韩敏义, 徐幸莲. 类蛋白反应及其在肉类中的应用[J]. 食品与发酵工业, 2021, 47(8): 261-267.
[1] WAN Qing-hui et al . Effects of two kinds of accumulated grains on fermentation characteristics and aroma quality of sesame-flavor liquor[J]. Food and Fermentation Industries, 2017, 43(11): 9 -15 .
[2] ZHANG Zhe-yuan.et al. Effects of different total solids of goat milk on quality of goat milk yogurt #br# [J]. Food and Fermentation Industries, 2017, 43(11): 112 .
[3] ZHANG Dong et al. Effect of different amounts of salt on quality of bacon[J]. Food and Fermentation Industries, 2017, 43(11): 159 .
[4] TANG Chun-hong et a. Comparisonoftraditionalandinnovativetechniquesofpickledchicken feetwithpeppers[J]. Food and Fermentation Industries, 2017, 43(11): 186 .
[5] . Isolation and identification of anaerobic bacteria in the process of Maotai-flavor liquor brewing[J]. Food and Fermentation Industries, 0, (): 1 .
[6] ZHANG Xue-qin et al.. Optimization of preparation of flavor based on material by microbial composite fermentation of Antarctic krill[J]. Food and Fermentation Industries, 0, (): 1 .
[7] . Study on the Modification Mechanism of Natural Fermented Starch Gel and the Isolation of Microorganism[J]. Food and Fermentation Industries, 2002, 28(4): 1 .
[8] . Study on the Main Components of the Gum from Ficus pumila (L.)[J]. Food and Fermentation Industries, 2002, 28(4): 38 .
[9] . Preliminary Study on the Influence of Heat Reaction on the Volatiles of Chicken Flavor[J]. Food and Fermentation Industries, 2002, 28(4): 56 .
[10] . [J]. Food and Fermentation Industries, 2002, 28(4): 80 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn