Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (16): 135-140    DOI: 10.13995/j.cnki.11-1802/ts.027773
  生产与科研应用 本期目录 | 过刊浏览 | 高级检索 |
基于右旋糖酐合成与降解的两步法制备低聚异麦芽糖
易子玲1,2, 吴敬1,2, 陈晟1,2*, 王蕾1,2*
1(食品科学与技术国家重点实验室(江南大学),江苏 无锡,214122)
2(江南大学 生物工程学院,江苏 无锡,214122)
Two-step preparation of isomalto-oligosacchrides: Synthesis and degradation of dextran
YI Ziling1,2, WU Jing1,2, CHEN Sheng1,2*, WANG Lei1,2*
1(State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China)
2(School of biotechnology, Jiangnan University, Wuxi 214122, China)
下载:  HTML  PDF (3629KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 低聚异麦芽糖(isomalto-oligosacchrides, IMOs)是一类由α-1,6糖苷键连接的寡聚糖,主要成分是异麦芽糖、异麦芽三糖(isomaltotriose, IG3)和潘糖等,因其具有可提高免疫力、预防龋齿等益生性能被广泛研究和应用。研究表明IMOs中可促进双歧杆菌的增殖主要归因于IG3。由于传统制备工艺产率低且产品中益生成分含量低,高效生产IMOs仍存在瓶颈。该研究提出使用来源于Lactobacillus fermentum的4,6-α-葡萄糖基转移酶(4,6-α-glycosyltransferases, LfGT)合成右旋糖酐,再使用来源于Brevibacterium fuscum的异麦芽三糖右旋糖酐酶(isomaltotrio-dextranase, BfIMTD)降解右旋糖酐的两步法制备IMOs的工艺,由此提高IMOs产率和IG3比例。在37 ℃,pH 6.0,反应时长为24 h的条件下,使用LfGT与普鲁兰酶和异普鲁兰酶复配可将200 g/L DE2麦芽糊精转化为产物占比为66.3%的右旋糖酐,其α-1,6糖苷键比率可达99.3%;在40 ℃,pH 7.5,反应10 h的条件下,BfIMTD水解右旋糖酐(终质量浓度100 g/L)可产出98.3 g/L的IG3,两步法IG3最终产率为65.2%。此两步法工艺为制备IMOs提供新思路,为IMOs链长可控性提供新策略。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
易子玲
吴敬
陈晟
王蕾
关键词:  低聚异麦芽糖  异麦芽三糖  右旋糖酐  异麦芽三糖右旋糖酐酶  4,6-α-葡萄糖基转移酶  普鲁兰酶  异普鲁兰酶    
Abstract: Isomalto-oligosaccharieds (IMOs) are a kind of oligosaccharides with α-1,6 glycosidic linkages, mainly including isomaltose, isomaltotriose (IG3) and panose, and they have been widely studied and applied because of the probiotic characteristics such as enhancing human immunity, preventing dental caries, etc. It was reported that IG3 in IMOs mainly contributed to the promotion of Bifidobacterium proliferation. However, due to the low production yield and low probiotics content of traditional preparation process, there is still a bottleneck in the efficient production of IMOs. To enhance IMOs production and increase IG3 proportion, we proposed a two-step method to produce IMOs, which combined dextran synthesis by 4,6-α-glycosyltransferase (4,6-α-GT, LfGT) from Lactobacillus fermentum with the following dextran degradation by isomaltotrio-dextranase (BfIMTD) from Brevibacterium fuscum. Under the condition of 37 ℃ and pH 6.0 for 24 h, using LfGT with pullulanase and isopullulanase, could produce dextran with 66.3% yield from 200 g/L maltodextrins, and the α-1,6 glycosidic linkage ratio of the generated dextran was up to 99.3%. Then 98.3 g/L IG3 was finally produced (65.2% from maltodextrins) when BfIMTD reacted with dextran (100 g/L final concentration) at 40 ℃ and pH of 7.5 for further 10 h. Therefore, this study suggests that the above two-step process can provide not only a new insight into the production of IMOs, but also an innovative strategy for the length controllability of IMOs.
Key words:  isomalto-oligosacchrides    isomaltotriose    dextran    isomaltotrio-dextranase    4,6-α-glycosyltransferases    pullulanase    isopullulanase
收稿日期:  2021-04-16      修回日期:  2021-04-30                发布日期:  2021-09-10      期的出版日期:  2021-08-25
基金资助: 国家自然科学基金青年科学基金项目(32001637);国家自然科学基金重点项目(31730067);国家自然科学基金面上项目(31972032)
作者简介:  硕士研究生(陈晟教授和王蕾助理研究员为共同通讯作者,E-mail:chensheng@jiangnan.edu.cn;leiwang_enzyme@jiangnan.edu.cn)
引用本文:    
易子玲,吴敬,陈晟,等. 基于右旋糖酐合成与降解的两步法制备低聚异麦芽糖[J]. 食品与发酵工业, 2021, 47(16): 135-140.
YI Ziling,WU Jing,CHEN Sheng,et al. Two-step preparation of isomalto-oligosacchrides: Synthesis and degradation of dextran[J]. Food and Fermentation Industries, 2021, 47(16): 135-140.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.027773  或          http://sf1970.cnif.cn/CN/Y2021/V47/I16/135
[1] 王良东. 低聚异麦芽糖性质、功能、 生产和应用[J].粮食与油脂, 2008,21(4):43-47.
WANG L D.The properties, functions, production and utilizations of isomaltooligosacharide[J].Journal of Cereals and Oils, 2008,21(4):43-47.
[2] SORNDECH W, NAKORN K N, TONGTA S, et al.Isomalto-oligosaccharides:Recent insights in production technology and their use for food and medical applications[J].LWT, 2018, 95:135-142.
[3] KANEKO T, KOHMOTO T, KIKUCHI H, et al.Effects of isomaltooligosaccharides with different degrees of polymerization on human fecal bifidobacteria[J].Bioscience, Biotechnology and Biochemistry, 1994, 58(12):2 288-2 290.
[4] KOHMOTO T, FUKUI F, TAKAKU H, et al.Effect of isomalto-oligosaccharides on human fecal flora[J].Bifidobacteria and Microflora, 1988, 7(2):61-69.
[5] WU Q Q, PI X E, LIU W, et al.Fermentation properties of isomaltooligosaccharides are affected by human fecal enterotypes[J].Anaerobe, 2017, 48:206-214.
[6] SORNDECH W, SAGNELLI D, BLENNOW A, et al.Combination of amylase and transferase catalysis to improve IMO compositions and productivity[J].LWT-Food Science and Technology, 2017, 79:479-486.
[7] LEE H S, AUH J H, YOON H G, et al.Cooperative action of α-glucanotransferase and maltogenic amylase for an improved process of isomaltooligosaccharide (IMO) production[J].Journal of Agricultural and Food Chemistry, 2002, 50(10):2 812-2 817.
[8] GAN W W, ZHANG H B, ZHANG Y Q, et al.Biosynthesis of oligodextrans with different Mw by synergistic catalysis of dextransucrase and dextranase[J].Carbohydrate Polymers, 2014, 112:387-395.
[9] SHUKLA S, SHI Q, MAINA N H, et al.Weissella confusa Cab3 dextransucrase:Properties and in vitro synthesis of dextran and glucooligosaccharides[J].Carbohydrate Polymers, 2014, 101:554-564.
[10] SONG J Y, KIM Y M, LEE B H, et al.Increasing the dietary fiber contents in isomaltooligosaccharides by dextransucrase reaction with sucrose as a glucosyl donor[J].Carbohydrate Polymers, 2020, 230:115 607.
[11] HUANG S X, HOU D Z, QI P X, et al.Enzymatic synthesis of non-digestible oligosaccharide catalyzed by dextransucrase and dextranase from maltose acceptor reaction[J].Biochemical and Biophysical Research Communications, 2020, 523(3):651-657.
[12] GOULAS A K, FISHER D A, GRIMBLE G K, et al.Synthesis of isomaltooligosaccharides and oligodextrans by the combined use of dextransucrase and dextranase[J].Enzyme and Microbial Technology, 2004, 35(4):327-338.
[13] KRALJ S, GRIJPSTRA P, VAN LEEUWEN S S, et al.4,6-α-glucanotransferase, a novel enzyme that structurally and functionally provides an evolutionary link between glycoside hydrolase enzyme families 13 and 70[J].Applied and Environmental Microbiology, 2011, 77(22):8 154-8 163.
[14] BAI Y X, GANGOITI J, DIJKSTRA B W, et al.Crystal structure of 4,6-α-glucanotransferase supports diet-driven evolution of GH70 enzymes from α-amylases in oral bacteria[J].Structure, 2017, 25(2):231-242.
[15] ARDÈVOL A, ROVIRA C.Reaction mechanisms in carbohydrate-active enzymes:Glycoside hydrolases and glycosyltransferases.Insights from ab initio quantum mechanics/molecular mechanics dynamic simulations[J].Journal of the American Chemical Society, 2015, 137(24):7 528-7 547.
[16] LEEMHUIS H, DOBRUCHOWSKA J M, EBBELAAR M, et al.Isomalto/malto-polysaccharide, a novel soluble dietary fiber made via enzymatic conversion of starch[J].Journal of Agricultural and Food Chemistry, 2014, 62(49):12 034-12 044.
[17] BAI Y X, VAN DER KAAIJ R M, LEEMHUIS H, et al.Biochemical characterization of the Lactobacillus reuteri glycoside hydrolase family 70 GTFB type of 4,6-α-glucanotransferase enzymes that synthesize soluble dietary starch fibers[J].Applied and Environmental Microbiology, 2015, 81(20):7 223-7 232.
[18] GANGOITI J, VAN LEEUWEN S S, MENG X F, et al.Mining novel starch-converting glycoside hydrolase 70 enzymes from the nestlé culture collection genome database:The Lactobacillus reuteri NCC 2613 GtfB[J].Scientific Reports, 2017, 7(1):9 947.
[19] 宿玲恰, 张悦, 吴敬.嗜热栖热菌海藻糖合酶的分子改造及其应用[J].食品与发酵工业, 2015, 41(12):1-5.
SU L Q, ZHANG Y, WU J.Molecular modification and application of trehalose synthase from Thermus themophilus[J].Food and Fermentation Industries, 2015, 41(12):1-5
[20] 刘玲玲. β-葡萄糖苷酶转化葡萄糖制备低聚龙胆糖的研究[D].无锡:江南大学, 2009.
LIU L L.Studies on production of gentiooligosaccharide from glucose with β-glucosidase[D].Wuxi:Jiangnan University, 2009.
[21] MILLER G L.Use of dinitrosalicylic acid reagent for determination of reducing sugar[J].Analytical Chemistry, 1959, 31(3):426-428.
[22] AKEBOSHI H, KASHIWAGI Y, AOKI H, et al.Construction of an efficient expression system for Aspergillus isopullulanase in Pichia pastoris, and a simple purification method[J].Bioscience Biotechnology and Biochemistry, 2003, 67(5):1 149-1 153.
[23] SAKANO Y, HIGUCHI M, KOBAYASHI T.Pullulan 4-glucanohydrolase from Aspergillus niger[J].Archives of Biochemistry and Biophysics, 1972, 153(1):180-187.
[24] MIZUNO T, MORI H, ITO H, et al.Molecular cloning of isomaltotrio-dextranase gene from Brevibacterium fuscum var.dextranlyticum strain 0407 and its expression in Escherichia coli[J].Bioscience, Biotechnology and Biochemistry, 1999, 63(9):1 582-1 588.
[1] 张亚楠, 申培立, 牛丹丹, 田康明, KUGEN PERMAUL, SUREN SINGH, 王正祥. 普鲁兰酶N467G突变体的酶学性质分析[J]. 食品与发酵工业, 2021, 47(5): 7-11.
[2] 林丽, 邓倩, 罗琳, 康渝接, 严唯玮, 何利, 敖晓琳, 刘书亮. 代谢多种低聚糖乳酸菌的筛选鉴定及其部分益生特性研究[J]. 食品与发酵工业, 2020, 46(17): 80-86.
[3] 黄瑞杰, 蓝平, 钟磊, 覃琴, 蓝丽红, 韦佳蔓, 廖安平, 李媚. 圆弧青霉发酵右旋糖酐酶过程动力学模型的建立[J]. 食品与发酵工业, 2019, 45(14): 57-62.
[4] 王婕, 朱新文, 德青美朵, 姚雁, 沈微, 陈献忠, 樊游. 一种中性普鲁兰酶的高效表达及重组酶在粉丝制作中的应用[J]. 食品与发酵工业, 2019, 45(14): 122-127.
[5] 黄楠, 周波, 叶童, 陈桂光, 梁智群, 曾伟. 黑曲霉H9-30全细胞催化合成低聚异麦芽糖[J]. 食品与发酵工业, 2019, 45(10): 36-41.
[6] 肖亚朋,沈微,李婷霖,陈献忠,樊游. 嗜热脂肪土芽孢杆菌普鲁兰酶基因的异源表达及重组酶性质[J]. 食品与发酵工业, 2017, 43(5): 30-.
[7] 谷海涛,李松,陈阿娜. 嵌合突变嗜酸普鲁兰芽孢杆菌普鲁兰酶结构域B对酶学性质及功能的影响[J]. 食品与发酵工业, 2017, 43(5): 43-.
[8] 王兵波,沈微,钱灵紫,李琛,罗枭,樊游,陈献忠. 一种密码子优化的酸性普鲁兰酶基因在巴斯德毕赤酵母中的高效表达[J]. 食品与发酵工业, 2016, 42(7): 9-.
[9] 申莹莹,郑宏臣,李树芳,付晓平,徐健勇,宋诙. 耐热普鲁兰酶CBM68结构域中关键位点对其酶学性质的影响[J]. 食品与发酵工业, 2016, 42(3): 12-.
[10] 查鑫华,郑璞,陈鹏程,魏哲. 以右旋糖酐发酵废液为原料发酵生产丁二酸[J]. 食品与发酵工业, 2016, 42(1): 7-.
[11] 严芬,杨光,连燕萍,王培松,吴晨烁. 产普鲁兰酶海单胞菌的分离鉴定及发酵条件优化[J]. 食品与发酵工业, 2015, 41(9): 40-.
[12] 王小兰,穆晓清,徐岩,聂尧. 重组大肠杆菌产普鲁兰酶发酵条件优化[J]. 食品与发酵工业, 2015, 41(7): 24-.
[13] 赵伟超,聂尧,穆晓清,张荣珍,徐岩. 采用复合保护剂提高重组普鲁兰酶稳定性[J]. 食品与发酵工业, 2015, 41(5): 48-.
[14] 许苗苗,焦国宝,王明道,孙利鹏,刘仲敏,邱立友. 启动子替代构建克雷伯氏菌普鲁兰酶高产菌株[J]. 食品与发酵工业, 2015, 41(10): 1-.
[15] 王苗苗,董海洲,张慧,侯汉学,尹训兰. 明胶/普鲁兰酶改性淀粉膜的制备与性能研究[J]. 食品与发酵工业, 2012, 38(09): 64-68.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn