Please wait a minute...
食品与发酵工业  2021, Vol. 47 Issue (16): 271-277    DOI: 10.13995/j.cnki.11-1802/ts.027827
  综述与专题评论 本期目录 | 过刊浏览 | 高级检索 |
朱灵桓1,2,3, 徐沙1,2, 李由然1,2, 张梁1,2, 石贵阳1,2*
1(江南大学 生物工程学院,江苏 无锡,214122)
2(粮食发酵工艺与技术国家工程实验室,江苏 无锡,214122)
3(河北科技大学 食品与生物学院,河北 石家庄,050018)
Recent advances on de novo biosynthesis of 2-phenylethanol
ZHU Linghuan1,2,3, XU Sha1,2, LI Youran1,2, ZHANG Liang1,2, SHI Guiyang1,2*
1(School of Biotechnology, Jiangnan University, Wuxi 214122, China)
2(National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China)
3(College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China)
下载:  HTML  PDF (3609KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 2-苯乙醇具有令人愉悦的玫瑰花香气和良好的理化性质,是一种被广泛应用于食品、医药与日用化工行业的芳香醇。由于市场前景良好,高品质2-苯乙醇产品的需求量逐年上升,绿色高效的微生物发酵制备策略成为近年来的研究热点。该文对微生物中2-苯乙醇的从头合成途径进行了综述,分析了相关的调控机理,并对多种代谢策略进行了评价和展望。
E-mail Alert
关键词:  2-苯乙醇  从头合成  莽草酸途径  代谢工程    
Abstract: 2-Phenylethanol is widely used in cosmetics, food and medicine industries owing to its favorable flavors and superior properties. However, the output of pollution-free and high-quality aromatic alcohols remains limited, which make the biosynthesis of 2-phenylethanol gradually become a research hotspot. In this study, the de novo synthetic pathway of 2-phenylethanol is reviewed, relative regulatory mechanism is analyzed, and various metabolic strategies are evaluated and prospected.
Key words:  2-phenylethanol    de novo synthesis    shikimate pathway    metabolic engineering
收稿日期:  2021-04-26      修回日期:  2021-04-30                发布日期:  2021-09-10      期的出版日期:  2021-08-25
基金资助: 国家自然科学基金项目(31571817)
作者简介:  博士,讲师(石贵阳教授为通讯作者,
朱灵桓,徐沙,李由然,等. 微生物法从头合成2-苯乙醇的研究进展[J]. 食品与发酵工业, 2021, 47(16): 271-277.
ZHU Linghuan,XU Sha,LI Youran,et al. Recent advances on de novo biosynthesis of 2-phenylethanol[J]. Food and Fermentation Industries, 2021, 47(16): 271-277.
链接本文:  或
[1] KROMER J O, BERNAL D, AVERESCH N J, et al.Production of aromatics in Saccharomyces cerevisiae-a feasibility study[J].J Biotechnol, 2013,163(2):184-193.
[2] ETSCHMANN M M W, BLUEMKE W, SELL D, et al.Biotechnological production of 2-phenylethanol[J].Applied Microbiolgy and Biotechnology, 2002,59(1):1-8.
[3] HUA D L, XU P.Recent advances in biotechnological production of 2-phenylethanol[J].Biotechnol Adv, 2011,29(6):654-660.
[4] SCHRADER J, ETSCHMANN M M W, SELL D, et al.Applied biocatalysis for the synthesis of natural flavour compounds current industrial processes and future prospects[J].Biotechnology Letters, 2004,26(6):463-472.
[5] WANG Y Q, ZHANG H, LU X Y, et al.Advances in 2-phenylethanol production from engineered microorganisms[J].Biotechnology Advances, 2019,37(3):403-409.
[6] GU Y, MA J B, ZHU Y L, et al.Engineering Yarrowia lipolytica as a chassis for de novo synthesis of five aromatic-derived natural products and chemicals[J].ACS Synthetic Biology, 2020,9(8):2 096-2 106.
[7] 牛明福,李亚恒,陈金帅,等.马克斯克鲁维酵母生物转化2-PE工艺优化及耐高温特性分析[J].食品与发酵工业, 2018,44(2):15-20.
NIU M F,LI Y H,CHEN J S, et al.Optimization and characterization of 2-phenylethanol bioconversion by thermotolerant yeast Kluyveromyces marxianus[J].Food and Fermentation Industries, 2018, 44(2):15-20.
[8] RAJKUMAR A S, MORRISSEY J P.Rational engineering of Kluyveromyces marxianus to create a chassis for the production of aromatic products[J].Microbial Cell Factories, 2020,19(1):207.
[9] DAI J, LI K, SONG N, et al.Zygosaccharomyces rouxii, an aromatic yeast isolated from chili sauce, is able to biosynthesize 2-phenylethanol via the shikimate or Ehrlich pathways[J].Frontiers in Microbiology, 2020,11:597 454.
[10] YAN W, ZHANG X Y, QIAN X J, et al.Comprehensive investigations of 2-phenylethanol production by high 2-phenylethanol tolerating Meyerozyma sp.strain YLG18[J].Enzyme and Microbial Technology, 2020,140:109 629.
[11] JIN D F, GU B T, XIONG D W, et al.A Transcriptomic analysis of Saccharomyces cerevisiae under the stress of 2-phenylethanol[J].Curr Microbiol, 2018,75(8):1 068-1 076.
[12] HASSING E J, DE GROOT P A, MARQUENIE V R, et al.Connecting central carbon and aromatic amino acid metabolisms to improve de novo 2-phenylethanol production in Saccharomyces cerevisiae[J].Metabolic Engineering, 2019,56:165-180.
[13] HELMSTAEDT K, STRITTMATTER A, LIPSCOMB W N,et al.Evolution of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase-encoding genes in the yeast Saccharomyces cerevisiae[J].PNAS, 2005,102(28):9 784–9 789.
[14] RODRIGUEZ A, KILDEGAARD K R, LI M J, et al.Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis[J].Metabolic Engineering, 2015,31:181-188.
[15] LIU Q L, YU T, LI X W, et al.Rewiring carbon metabolism in yeast for high level production of aromatic chemicals[J].Nature Communications, 2019,10(1):4 976.
[16] KIM T Y, LEE S W, OH M K.Biosynthesis of 2-phenylethanol from glucose with genetically engineered Kluyveromyces marxianus[J].Enzyme and Microbial Technology, 2014,61-62:44-47.
[17] GUO D Y, ZHANG L H, KONG S J, et al.Metabolic engineering of Escherichia coli for production of 2-phenylethanol and 2-phenylethyl acetate from glucose[J].Journal of Agricultural and Food Chemistry, 2018,66(23):5 886-5 891.
[18] MACHAS M S, MCKENNA R, NIELSEN D R.Expanding upon styrene biosynthesis to engineer a novel route to 2-phenylethanol[J].Biotechnol Journal, 2017,12(10):1 700 310.
[19] KONG S J, PAN H, LIU X Y, et al.De novo biosynthesis of 2-phenylethanol in engineered Pichia pastoris[J].Enzyme and Microbial Technology, 2020,133:109 459.
[20] SUÁSTEGUI M, GUO W H, FENG X Y, et al.Investigating strain dependency in the production of aromatic compounds in Saccharomyces cerevisiae[J].Biotechnology and Bioengineering, 2016,113(12):2 676-2 685.
[21] GOLD N D, GOWEN C M, LUSSIER F X, et al.Metabolic engineering of a tyrosine-overproducing yeast platform using targeted metabolomics[J].Microbial Cell Factories, 2015,14:73.
[22] GUO W, HUANG Q L, LIU H, et al.Rational engineering of chorismate-related pathways in Saccharomyces cerevisiae for improving tyrosol production[J].Frontiers in Bioengineering and Biotechnology, 2019,7:152.
[23] GUO W, HUANG Q L, FENG Y H, et al.Rewiring central carbon metabolism for tyrosol and salidroside production in Saccharomyces cerevisiae[J].Biotechnology and Bioengineering, 2020,117(8):2 410-2 419.
[24] CURRAN K A, LEAVITT J M, KARIM A S, et al.Metabolic engineering of muconic acid production in Saccharomyces cerevisiae[J].Metabolic Engineering, 2013,15:55-66.
[25] ZHU L H, WANG J H, XU S, et al.Improved aromatic alcohol production by strengthening the shikimate pathway in Saccharomyces cerevisiae[J].Process Biochemistry, 2021,103:18-30.
[26] BERGMAN A, HELLGREN J, MORITZ T, et al.Heterologous phosphoketolase expression redirects flux towards acetate, perturbs sugar phosphate pools and increases respiratory demand in Saccharomyces cerevisiae[J].Microbial Cell Factories, 2019,18(1):25.
[27] SUÁSTEGUI M, YU N C, CHOWDHURY A, et al.Multilevel engineering of the upstream module of aromatic amino acid biosynthesis in Saccharomyces cerevisiae for high production of polymer and drug precursors[J].Metabolic Engineering, 2017,42:134-144.
[28] NOCON J, STEIGER M, MAIRINGER T, et al.Increasing pentose phosphate pathway flux enhances recombinant protein production in Pichia pastoris[J].Applied Microbiology and Biotechnology, 2016,100(13):5 955-5 963.
[29] LYU X M, NG K R, MARK R, et al.Comparative metabolic profiling of engineered Saccharomyces cerevisiae with enhanced flavonoids production[J].Journal of Functional Foods, 2018,44:274-282.
[30] LUTTIK M A H, VURALHAN Z, SUIR E, et al.Alleviation of feedback inhibition in Saccharomyces cerevisiae aromatic amino acid biosynthesis:Quantification of metabolic impact[J].Metabolic Engineering, 2008,10(3):141-153.
[31] LI M W, LANG X Y, MORAN CABRERA M, et al.CRISPR-mediated multigene integration enables Shikimate pathway refactoring for enhanced 2-phenylethanol biosynthesis in Kluyveromyces marxianus[J/OL].Biotechnology for Biofuels, 2021,14(1).DOI:10.1186/S13068-020-01852-3.
[32] LIU S P, XIAO M R, ZHANG L, et al.Production of L-phenylalanine from glucose by metabolic engineering of wild type Escherichia coli W3110[J].Process Biochem, 2013,48(3):413-419.
[33] ZHANG C Z, KANG Z, ZHANG J L, et al.Construction and application of novel feedback-resistant 3-deoxy-d-arabino-heptulosonate-7-phosphate synthases by engineering the N-terminal domain for L-phenylalanine synthesis[J].FEMS Microbiology Letters, 2014,353(1):11-18.
[34] REIFENRATH M, BAUER M, OREB M, et al.Bacterial bifunctional chorismate mutase-prephenate dehydratase PheA increases flux into the yeast phenylalanine pathway and improves mandelic acid production[J].Metabolic Engineering Communications, 2018,7:e00 079.
[35] LIU S P, LIU R X, XIAO M R, et al.A systems level engineered E.coli capable of efficiently producing L-phenylalanine[J].Process Biochemistry, 2014,49(5):751-757.
[36] ZHANG H B, CAO M L, JIANG X L, et al.De novo synthesis of 2-phenylethanol by Enterobacter sp.CGMCC 5087[J].BMC Biotechnology, 2014,14(1):1-7.
[37] LIU S P, YANG Q L, MAO J Q, et al.Feedback inhibition of the prephenate dehydratase from Saccharomyces cerevisiae and its mutation in Huangjiu (Chinese rice wine) yeast[J].LWT, 2020,133:110 040.
[38] ROMAGNOLI G, KNIJNENBURG T A, LITI G, et al.Deletion of the Saccharomyces cerevisiae ARO8 gene, encoding an aromatic amino acid transaminase, enhances phenylethanol production from glucose[J].Yeast, 2015,32(1):29-45.
[39] WANG Y Q, ZHANG Z Y, LU X Y, et al.Genetic engineering of an industrial yeast Candida glycerinogenes for efficient production of 2-phenylethanol[J].Applied Microbiology and Biotechnology, 2020,104(24):10 481-10 491.
[40] VURALHAN Z, LUTTIK M A H, TAI S L, et al.Physiological characterization of the ARO10-dependent, broad-substrate-specificity 2-oxo acid decarboxylase activity of Saccharomyces cerevisiae[J].Appl Biochem Biotechnol, 2005,71(6):3 276-3 284.
[41] VURALHAN Z, MORAIS M A, TAI S L, et al.Identification and characterization of phenylpyruvate decarboxylase genes in Saccharomyces cerevisiae[J].Appl Biochem Biotechnol, 2003,69(8):4 534-4 541.
[42] KNEEN M M, STAN R, YEP A, et al.Characterization of a thiamin diphosphate-dependent phenylpyruvate decarboxylase from Saccharomyces cerevisiae[J].FEBS J, 2011,278(11):1 842-1 853.
[43] STRIBNY J, ROMAGNOLI G, PÉREZ-TORRADO R, et al.Characterisation of the broad substrate specificity 2-keto acid decarboxylase Aro10p of Saccharomyces kudriavzevii and its implication in aroma development[J].Microbial Cell Factories, 2016,15(1):1-12.
[44] BOLAT I, ROMAGNOLI G, ZHU F B, et al.Functional analysis and transcriptional regulation of two orthologs of ARO10, encoding broad-substrate-specificity 2-oxo-acid decarboxylases, in the brewing yeast Saccharomyces pastorianus CBS1483[J].FEMS Yeast Research, 2013,13(6):505-517.
[45] KANG Z, ZHANG C Z, DU G C, et al.Metabolic engineering of Escherichia coli for production of 2-phenylethanol from renewable glucose[J].Applied Biochemistry and Biotechnology, 2014,172(4):2 012-2 021.
[46] GUO D Y, ZHANG L H, PAN H, et al.Metabolic engineering of Escherichia coli for production of 2-phenylethylacetate from L-phenylalanine[J].MicrobiologyOpen, 2017,6(4):1-5.
[47] MO Q W, CHEN H Y, FAN C, et al.Utilization of a styrene-derived pathway for 2-phenylethanol production in budding yeast[J].Applied Microbiology and Biotechnology, 2021,105(6):2 333-2 340.
[48] YANG D D, BILLERBECK G, ZHANG J J.Deciphering the origin, evolution, and physiological function of the subtelomeric aryl-alcohol dehydrogenase gene family in the yeast Saccharomyces cerevisiae[J].Applied and Environmental Microbiology, 2018,84(1):1-16.
[49] LIMA L A, VENTORIM R Z, BIANCHINI I A, et al.Obtainment, selection and characterization of a mutant strain of Kluyveromyces marxianus that displays improved production of 2-phenylethanol and enhanced DAHP synthase activity[J].Journal of Applied Microbiology, 2021,130(3):878-890.
[1] 李晨晨, 李梦丽, 江波, 张涛. 2'-岩藻糖基乳糖的生物合成菌株构建及发酵条件研究[J]. 食品与发酵工业, 2021, 47(3): 10-17.
[2] 刘慧, 陈胜玲, 徐建中, 张伟国. α-法尼烯在巴斯德毕赤酵母中的生物合成[J]. 食品与发酵工业, 2021, 47(16): 9-14.
[3] 朱灵桓, 徐沙, 李由然, 张梁, 石贵阳. 酿酒酵母PDC5基因的缺失对2-苯乙醇合成的影响及相关代谢改造[J]. 食品与发酵工业, 2021, 47(16): 22-30.
[4] 马巍, 邹祥. 发酵法生产L-岩藻糖的研究进展[J]. 食品与发酵工业, 2021, 47(16): 308-312.
[5] 史荣超, 刘洒洒, 侯阳阳, 张梦瑶, 龚佳, 江晓楠, 杨晓兵. 梅奇酵母转化L-苯丙氨酸合成2-苯乙醇发酵条件优化[J]. 食品与发酵工业, 2021, 47(15): 22-28.
[6] 李梦莹, 吕雪芹, 刘延峰, 李江华, 堵国成, 吴剑荣, 刘龙. 代谢工程改造大肠杆菌合成L-组氨酸[J]. 食品与发酵工业, 2021, 47(12): 1-9.
[7] 刘益宁, 秦臻, 李旋, 蒋帅, 吴鹤云, 谢希贤. 胞苷合成途径改造对大肠杆菌嘧啶核苷发酵的影响[J]. 食品与发酵工业, 2021, 47(12): 10-16.
[8] 桑昆昆, 刘晓凤, 熊智强, 张汇, 王光强, 宋馨, 艾连中, 夏永军. 透明质酸分子质量调控进展[J]. 食品与发酵工业, 2021, 47(11): 272-278.
[9] 曲丽莎, 于文文, 吕雪芹, 李江华, 堵国成, 刘龙. 生物-化学法合成维生素D的研究进展[J]. 食品与发酵工业, 2021, 47(1): 276-284.
[10] 郑鹏, 张孟娟, 黄思瑶, 康新玥, 陈叶福. 过表达乙酰-CoA相关基因提高出芽短梗霉liamocins合成能力[J]. 食品与发酵工业, 2020, 46(9): 25-30.
[11] 周胜虎, 毛银, 邓禹. 发酵过程中时空水平的动态调控策略研究进展[J]. 食品与发酵工业, 2020, 46(21): 277-283.
[12] 朱福周, 芦楠, 李宇虹, 林蓓蓓, 郑颖楠, 王子申, 陈宁, 张成林. 增强回补途径对谷氨酸棒状杆菌合成L-异亮氨酸的影响[J]. 食品与发酵工业, 2020, 46(2): 11-17.
[13] 胡立涛, 王阳, 李佳莲, 周思延, 王道安, 尹国斌, 刘京京, 康振, 陈坚. 代谢工程改造谷氨酸棒杆菌合成透明质酸[J]. 食品与发酵工业, 2020, 46(18): 1-7.
[14] 杨帆, 苏卜利, 王永红, 张玉莲, 黄桦瑞, 张秀秀, 朱红惠. 启动子对重组大肠杆菌合成番茄红素能力的影响[J]. 食品与发酵工业, 2020, 46(17): 27-32.
[15] 季安营, 魏雪团. 改造非磷酸转移酶葡萄糖转运途径强化解淀粉芽胞杆菌合成L-酪氨酸[J]. 食品与发酵工业, 2020, 46(15): 27-31.
No Suggested Reading articles found!
Full text



版权所有 © 《食品与发酵工业》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持