Please wait a minute...
 
 
食品与发酵工业  2022, Vol. 48 Issue (3): 1-8    DOI: 10.13995/j.cnki.11-1802/ts.028278
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
黑曲霉转化系统的优化及重组菌株高效筛选
李岑1,2, 刘松1,2*, 堵国成2*
1(粮食发酵工艺与技术国家工程实验室(江南大学),江苏 无锡,214122)
2(江南大学 生物工程学院,江苏 无锡,214122)
Optimization of Aspergillus niger transformation system and efficient screening of recombinant strains
LI Cen1,2, LIU Song1,2*, DU Guocheng2*
1(National Engineering Laboratory for Cereal Fermentation Technology,Jiangnan University,Wuxi 214122,China)
2(School of Biotechnology,Jiangnan University,Wuxi 214122,China)
下载:  HTML  PDF (6379KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 黑曲霉(Aspergillus niger)是食品工业中重要的生产菌株,广泛应用于酶和有机酸生产。为提高黑曲霉遗传操作效率,对黑曲霉转化及重组菌株筛选策略进行优化。基于已报道的最佳转化条件对黑曲霉AG11进行电转化、农杆菌介导和聚乙二醇(polyethylene glycol,PEG)介导转化(Agrobacterium-mediated and PEG-mediated transformation,PMT),单个潮霉素转化板分别得到0、30和6个转化子。其中,PMT的转化子阳性率最高。基于优化后的原生质体制备条件:0.8~1 g松散的菌丝球于10 mL Yatalase溶液(0.8 mg/mL,pH 5.5)反应2.5 h,获得原生质体并进行PMT,转化效率较优化前提高14倍。为提高转化子筛选效率,将融合绿色荧光蛋白(green fluorescent protein,GFP)的天冬酰胺酶(asparaginase,ASN)基因整合至黑曲霉AG11糖化酶位点,并通过流式细胞仪分选表达ASN的孢子。分选结果显示,0.3%的孢子能表达GFP(共筛选30万个孢子)。酶活力分析表明,65%表达GFP的孢子能表达ASN。研究结果将为黑曲霉基因编辑提供重要方法学基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李岑
刘松
堵国成
关键词:  黑曲霉  PEG介导转化  原生质体  流式细胞仪  绿色荧光蛋白  天冬酰胺酶    
Abstract: Aspergillus niger is an important production strain in food industry, widely used in production of enzymes and organic acids. To improve the genetic efficiency of A. niger, the transformation and recombinant strain screening strategies were optimized. According to the reported optimal transformation conditions, A. niger AG11 was transformed via electroporation, Agrobacterium-mediated and PEG-mediated transformation (PMT), and a hygromycin transformation plate yield 0, 30, and 6 transformants, respectively. PMT achieved the highest positive rate of transformants. Based on the optimized protoplast preparation condition: 0.8-1 g loose mycelial pellets were incubated in 10 mL Yatalase solution (0.8 mg/mL, pH 5.5) for 2.5 h to obtain protoplasts and used to PMT, the transformation efficiency was increased by 14-fold than that before optimization. To improve the screening efficiency of transformants, the asparaginase (ASN) gene fused with green fluorescent protein (GFP) was integrated into the glycosylase locus of A. niger AG11, and those spores expressing ASN were sorted by flow cytometry. The results showed that 0.3% of the spores could express the GFP (a total of 300 000 spores were screened). Enzyme activity analysis indicated that 65% of the spores expressing GFP could produce ASN. These results provide an important methodological basis for gene editing of A. niger.
Key words:  Aspergillus niger    polyethylene glycol-mediated transformation    protoplast    flow cytometer    green fluorescent protein    asparaginase
收稿日期:  2021-06-11      修回日期:  2021-07-18           出版日期:  2022-02-15      发布日期:  2022-03-04      期的出版日期:  2022-02-15
基金资助: 国家重点研发计划项目(2019YFA0905300);国家自然科学基金项目(31771913);国家自然科学基金项目(32071474)
作者简介:  博士研究生(刘松副教授和堵国成教授为共同通信作者,E-mail:liusong@jiangnan.edu.cn;gcdu@jiangnan.edu.cn)
引用本文:    
李岑,刘松,堵国成. 黑曲霉转化系统的优化及重组菌株高效筛选[J]. 食品与发酵工业, 2022, 48(3): 1-8.
LI Cen,LIU Song,DU Guocheng. Optimization of Aspergillus niger transformation system and efficient screening of recombinant strains[J]. Food and Fermentation Industries, 2022, 48(3): 1-8.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.028278  或          http://sf1970.cnif.cn/CN/Y2022/V48/I3/1
[1] PARK H S,JUN S C,HAN K H,et al.Diversity,application,and synthetic biology of industrially important Aspergillus fungi[J].Advances in Applied Microbiology,2017,100:161-202.
[2] 郑小梅,郑平,孙际宾.基于CRISPR/Cas系统的黑曲霉基因组编辑技术[J].生物工程学报,2021,37(3):980-990.ZHENG X M,ZHENG P,SUN J B.CRISPR/Cas-based genome editing in Aspergillus niger[J].Chinese Journal of Biotechnology,2021,37(3):980-990.
[3] BATOOL T,MAKKY E A,JALAL M,et al.A comprehensive review on L-asparaginase and its applications[J].Applied Biochemistry and Biotechnology,2016,178(5):900-923.
[4] CAIRNS T C,NAI C,MEYER V.How a fungus shapes biotechnology:100 years of Aspergillus niger research[J].Fungal Biology and Biotechnology,2018,5(1):1-14.
[5] LI D D,TANG Y,LIN J,et al.Methods for genetic transformation of filamentous fungi[J].Microbial Cell Factories,2017,16(1):168.
[6] LI C,ZHOU J W,DU G C,et al.Developing Aspergillus niger as a cell factory for food enzyme production[J].Biotechnology Advances,2020,44:107630.
[7] 李松,王正祥.黑曲霉电转化条件的研究[J].微生物学杂志,2010,30(1):11-15.LI S,WANG Z X.Transformation of Aspergillus niger by electroporation-mediated transformation[J].Journal of Microbiology,2010,30(1):11-15.
[8] RIVERA A L,MAGA?A-ORTíZ D,GóMEZ-LIM M,et al.Physical methods for genetic transformation of fungi and yeast[J].Physics of Life Reviews,2014,11(2):184-203.
[9] DING Y,WANG K F,WANG W J,et al.Increasing the homologous recombination efficiency of eukaryotic microorganisms for enhanced genome engineering[J].Applied Microbiology and Biotechnology,2019,103(11):4 313-4 324.
[10] DE BEKKER C,WIEBENGA A,AGUILAR G,et al.An enzyme cocktail for efficient protoplast formation in Aspergillus niger[J].Journal of Microbiological Methods,2009,76(3):305-306.
[11] XU Y,WANG Y H,LIU T Q,et al.The GlaA signal peptide substantially increases the expression and secretion of α-galactosidase in Aspergillus niger[J].Biotechnology Letters,2018,40(6):949-955.
[12] ZHU S Y,XU Y,YU X W.Improved homologous expression of the acidic lipase from Aspergillus niger[J].Journal of Microbiology and Biotechnology,2020,30(2):196-205.
[13] DEMIRCI E,ARENTSHORST M,YILMAZ B,et al.Genetic characterization of mutations related to conidiophore stalk length development in Aspergillus niger laboratory strain N402[J].Frontiers in Genetics,2021,12:666684.
[14] 殷娴,庞冬洽,韩瑞枝,等.优化黑曲霉柠檬酸生产菌株原生质体形成条件及表达系统的建立[J].食品与生物技术学报,2016,35(9):963-970.YIN X,PANG D Q,HAN R Z,et al.Protoplasting improvement of industrial citrate-producing Aspergillus niger for DNA transformation[J].Journal of Food Science and Biotechnology,2016,35(9):963-970.
[15] ZHENG X M,ZHENG P,ZHANG K,et al.5S rRNA Promoter for guide RNA expression enabled highly efficient CRISPR/Cas9 genome editing in Aspergillus niger[J].ACS Synthetic Biology,2018,8(7):1 568-1 574.
[16] MEYER V,RAM A J,PUNT P J.Genetics,Genetic Manipulation,and Approaches to Strain Improvement of Filamentous Fungi[M].New York:Wiley,2010.
[17] WANG G K,JIA W D,CHEN N,et al.A GFP-fusion coupling FACS platform for advancing the metabolic engineering of filamentous fungi[J].Biotechnology for Biofuels,2018,11:232.
[18] YIN X,SHIN H D,LI J H,et al.Pgas,a low-pH-induced promoter,as a tool for dynamic control of gene expression for metabolic engineering of Aspergillus niger[J].Applied and Environmental Microbiology,2017,83(6):e03222.
[19] NØDVIG C S,HOOF J B,KOGLE M E,et al.Efficient oligo nucleotide mediated CRISPR-Cas9 gene editing in Aspergilli[J].Fungal Genetics and Biology,2018,115:78-89.
[20] ZHANG H,WANG S,ZHANG X X,et al.The amyR-deletion strain of Aspergillus niger CICC2462 is a suitable host strain to express secreted protein with a low background[J].Microbial Cell Factories,2016,15(1):68.
[21] 朱思远,徐岩,喻晓蔚.农杆菌介导转化黑曲霉条件优化及脂肪酶表达[J].食品与生物技术学报,2020,39(5):51-58.ZHU S Y,XU Y,YU X W.Optimization of Agrobacterium tumefaciens-mediated transformation of Aspergillus niger and expression of lipase[J].Journal of Food Science and Biotechnology,2020,39(5):51-58.
[22] FENG Y,LIU S,JIAO Y,et al.Gene cloning and expression of the L-asparaginase from Bacillus cereus BDRD-ST26 in Bacillus subtilis WB600[J].Journal of Bioscience and Bioengineering,2019,127(4):418-424.
[23] NANDAKUMAR M P,MARTEN M R.Comparison of lysis methods and preparation protocols for one-and two-dimensional electrophoresis of Aspergillus oryzae intracellular proteins[J].Electrophoresis,2002,23(14):2 216-2 222.
[24] KUWANO T,SHIRATAKI C,ITOH Y.Comparison between polyethylene glycol-and polyethylenimine-mediated transformation of Aspergillus nidulans[J].Current Genetics,2008,54(2):95-103.
[25] PEL H J,DE WINDE J H,ARCHER D B,et al.Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88[J].Nature Biotechnology,2007,25(2):221-231.
[1] 胡江峰, 刘舒雯, 杨焱, 李林霖, 李迎凯, 张健. 黑曲霉pyrG遗传转化系统的构建及应用[J]. 食品与发酵工业, 2022, 48(2): 15-19.
[2] 宋馨, 王慧, 袁世豪, 黄佳伟, 易文涛, 艾连中. 基于CRISPR/Cas9系统对乳酸乳球菌进行绿色荧光蛋白标记[J]. 食品与发酵工业, 2022, 48(2): 163-167.
[3] 王雪, 冯旭, 贺付蒙, 徐永清, 袁强, 李丽, 刘丹, 孔德兴, 李凤兰. 冬小麦扩展蛋白TaEXPA8黑曲霉工程菌的构建及纤维素水解作用分析[J]. 食品与发酵工业, 2022, 48(2): 219-223.
[4] 金赛, 孙福新, 胡志杰, 李由然, 堵国成, 石贵阳, 陈坚. 孢子预培养与形态控制提高柠檬酸生产效率[J]. 食品与发酵工业, 2022, 48(1): 1-7.
[5] 郑潇, 周化岚, GULTOM Sarman Oktovianus, 邓佳宝, 张建国. 黑曲霉快速高效收获异养小球藻的条件优化[J]. 食品与发酵工业, 2021, 47(23): 16-23.
[6] 周成慧, 赵阳, 王德行, 席茂盛, 罗学刚. 植物乳杆菌CGMCC8198 β-羟脂酰-ACP脱水酶启动子的克隆及其冷激调节作用分析[J]. 食品与发酵工业, 2021, 47(15): 9-14.
[7] 董弦弦, 吴晓江, 张钰龙, 巫小丹, 万茵, 刘成梅, 付桂明. 常压室温等离子体诱变选育产单宁酶炭黑曲霉及发酵参数优化[J]. 食品与发酵工业, 2021, 47(15): 15-21.
[8] 蔡程山, 王雨, 白飞荣, 翟磊, 张天赐, 胡海蓉, 姚粟. 黑曲霉Aspergillus niger全基因组DNA提取方法的改良与比较[J]. 食品与发酵工业, 2020, 46(6): 13-18.
[9] 韩小敏, 李凤琴. 黑曲霉群菌种多相分类和鉴定方法最新研究进展[J]. 食品与发酵工业, 2020, 46(23): 279-285.
[10] 赵昊, 全莉, 于佳俊, 张晓蒙, 马文瑞, 武运, 薛洁. 新疆酿酒葡萄中赭曲霉毒素A来源菌的筛选及其产毒条件研究[J]. 食品与发酵工业, 2020, 46(19): 35-41.
[11] 刘璐, 艾连中, 夏永军, 熊智强, 管彤, 宋馨. 乳酸乳球菌NZ9000中增强型绿色荧光蛋白报告系统的构建[J]. 食品与发酵工业, 2020, 46(11): 46-51.
[12] 潘菲, 董彪, 刘婷, 陈妍, 陈可丹, 黄冰静, 万茵, 刘成梅, 张鹏, 付桂明. 黑曲霉Aspergillus niger NCUF413.1对特香型白酒酿造出酒率和风味的影响[J]. 食品与发酵工业, 2020, 46(1): 23-29.
[13] 苑馨瑶, 田康明, 金鹏, 程磊, 王正祥. 黑曲霉低聚葡萄糖氧化酶的分子克隆与生化特征[J]. 食品与发酵工业, 2020, 46(1): 30-35.
[14] 朱强, 王瑞鑫, 吴铖迪, 夏艳秋. 黑曲霉SP7-2固态发酵产生淀粉糖化酶工艺优化[J]. 食品与发酵工业, 2019, 45(8): 98-102.
[15] 王鑫, 金鹏, 宋鹏, 董自星, 刘晓光, 王正祥. 黑曲霉酸性蛋白酶EXPA的克隆表达与酶学性质解析[J]. 食品与发酵工业, 2019, 45(3): 40-46.
[1] JU Ning et al. Isolation, screening and analysis of aroma components of non-Saccharomyces for wolfberry wine[J]. Food and Fermentation Industries, 2017, 43(11): 125 .
[2] TANG Chun-hong et a. Comparisonoftraditionalandinnovativetechniquesofpickledchicken feetwithpeppers[J]. Food and Fermentation Industries, 2017, 43(11): 186 .
[3] CAI Jian. Determinationoffolicacidinsportsdrinkby UPLC-MS/MS[J]. Food and Fermentation Industries, 2017, 43(11): 220 .
[4] JI Xiao-kai et al. Research advance in the effect of electric alstimulation on beef quality[J]. Food and Fermentation Industries, 2017, 43(11): 244 .
[5] YUAN Xu, WU Xiao-yu, LI Wei-li, WANG Qing-hui, LIU Ping, LIN Hong-bin, CHE Zhen-ming, WU Tao. Evaluation of nutrition, polyphenols and their antioxidant activities in Pixian bean paste[J]. Food and Fermentation Industries, 2018, 44(9): 270 -274 .
[6] FU Gui-ming et al.. Effects of replacement of Rice Wine Lees on texture of yoghurt[J]. Food and Fermentation Industries, 0, (): 1 .
[7] . [J]. Food and Fermentation Industries, 2002, 28(4): 74 .
[8] . Study on the New Technology of Citric Acid Fermentation Using Puffed Dry Potato as Raw Material[J]. Food and Fermentation Industries, 2002, 28(6): 53 .
[9] . Studies on the Fermentation Medium of the Trehalose Synthase-Producing Strain[J]. Food and Fermentation Industries, 2002, 28(7): 34 .
[10] . [J]. Food and Fermentation Industries, 2002, 28(8): 84 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn