Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (20): 297-302    DOI: 10.13995/j.cnki.11-1802/ts.028285
  综述与专题评论 本期目录 | 过刊浏览 | 高级检索 |
微生物合成中链二元羧酸的代谢工程研究进展
李国辉1,2*, 毛银1,2
1(粮食发酵工艺与技术国家工程实验室(江南大学),江苏 无锡,214122)
2(江南大学 生物工程学院,江苏 无锡,214122)
Advances in metabolic engineering of microorganisms for medium-chain dicarboxylic acids biosynthesis
LI Guohui1,2*, MAO Yin1,2
1(National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University,Wuxi 214122, China)
2(School of Biotechnology, Jiangnan University, Wuxi 214122, China)
下载:  HTML  PDF (1575KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 中链二元羧酸是一类含有两个羧基的直链饱和有机酸,是制备高分子材料、橡胶、药物、染料等产品的重要原料。然而目前中链二元羧酸的工业化生产主要依赖于化学合成法,导致氮氧化物等污染物过度排放。为了实现中链二元羧酸的清洁生产,开发基于微生物发酵的生产方法迫在眉睫。以下就丁二酸、戊二酸、己二酸以及碳数更多的庚二酸、辛二酸、壬二酸、癸二酸的最新研究进展进行综述,从应用价值、传统生产方式以及生物法合成方式等角度对中链二元羧酸展开介绍,并对其今后的研究方向进行展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李国辉
毛银
关键词:  中链二元羧酸  丁二酸  戊二酸  己二酸  生物法合成    
Abstract: As a class of linear saturated organic acids containing two carboxyl groups, medium-chain dicarboxylic acids (MCDs) play an important role as raw materials for the preparation of polymers, rubbers, pharmaceuticals, dyes and other products. However, the current industrial production of MCDs mainly relies on chemical synthesis, which leads to excessive emission of nitrogen oxides. Therefore, it is important to establish an alternative approach based on microbial fermentation to achieve the cleaner production of MCDs. In this review, the most recent research progress of succinic acid, glutaric acid, adipic acid and the medium-chain dicarboxylic acids with more carbon number such as pimelic acid, suberic acid, azelaic acid and sebacic acid are reviewed. The medium chain dicarboxylic acids are introduced from the perspective of application value, traditional production methods and biological synthesis methods, and the future directions of the research are also forecasted.
Key words:  medium-chain dicarboxylic acids    succinic acid    glutaric acid    adipic acid    biological synthesis
收稿日期:  2021-06-15      修回日期:  2021-07-02           出版日期:  2021-10-25      发布日期:  2021-11-18      期的出版日期:  2021-10-25
基金资助: 国家重点研发计划项目(2018YFA0901400);国家自然科学基金(22008088);中国博士后科学基金资助项目(2020M681485;2021T140277);江苏省博士后科研资助计划(2020Z012)
作者简介:  博士,助理研究员(本文通讯作者,E-mail:guohuili@jiangnan.edu.cn)
引用本文:    
李国辉,毛银. 微生物合成中链二元羧酸的代谢工程研究进展[J]. 食品与发酵工业, 2021, 47(20): 297-302.
LI Guohui,MAO Yin. Advances in metabolic engineering of microorganisms for medium-chain dicarboxylic acids biosynthesis[J]. Food and Fermentation Industries, 2021, 47(20): 297-302.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.028285  或          http://sf1970.cnif.cn/CN/Y2021/V47/I20/297
[1] MILLARD C S, CHAO Y P, LIAO J C, et al.Enhanced production of succinic acid by overexpression of phosphoenolpyruvate carboxylase in Escherichia coli[J].Applied and Environmental Microbiology, 1996, 62(5):1 808-1 810.
[2] ADKINS J, JORDAN J, NIELSEN D R.Engineering Escherichia coli for renewable production of the 5-carbon polyamide building-blocks 5-aminovalerate and glutarate[J].Biotechnology & Bioengineering, 2013, 110(6):1 726-1 734.
[3] VERA M, ADMETLLA M, RODRÍGUEZ-GALÁN A, et al.Synthesis, characterization and degradation studies on the series of sequential poly(ester amide)s derived from glycolic acid 1,6-hexanediamine and aliphatic dicarboxylic acids[J].Polymer Degradation & Stability, 2005, 89(1):21-32.
[4] SHENDE P G, JADHAV A B, DABHADE S B.Polyesteramide resins from dehydrated Castor oil and various dibasic acids[J].Pigment & Resin Technology, 2002, 31(5):310-314.
[5] 李春丽, 陈新志, 赵新丽.丁二酸的制备及用途[J].青海大学学报, 1999,17(6):22-24.
LI C L, CHEN X Z, ZHAO X L.Preparation and uses of succinic acid[J].Journal of Qinghai University, 1999,17(6):22-24.
[6] 张方, 孙凯, 周振鹏.丁二酸的合成研究现状及发展[J].聚酯工业, 2016, 29(1):3-6.
ZHANG F, SUN K, ZHOU Z P. The synthesis research present situation and development of succinic acid[J]. Polyester Industry, 2016, 29(1):3-6.
[7] YANG J, LIU J W, GE Y, et al.Direct and selective synthesis of adipic and other dicarboxylic acids by palladium-catalyzed carbonylation of allylic alcohols[J].Angewandte Chemie International Edition, 2020, 59(46):20 394-20 398.
[8] 詹晓北, 朱一晖, WANG D H.琥珀酸发酵生产工艺及其产品市场[J].食品科技, 2003(2):44-49.
ZHAN X B, ZHU Y H, WANG D H.Succinic acid production and potential market[J].Food Science and Technology, 2003(2):44-49.
[9] SONG H, LEE S Y.Production of succinic acid by bacterial fermentation[J].Enzyme & Microbial Technology, 2006, 39(3):352-361.
[10] GLASSNER D A, DATTA R.Process for the production and purification of succinic acid:US5143834[P].1992-09-01.
[11] GUETTLER M V, JAIN M K, RUMLER D.Method for making succinic acid, bacterial variants for use in the process,and methods for obtaining variants:US5573931[P].1996-11-12.
[12] LEE S J, SONG H, LEE S Y.Genome-based metabolic engineering of Mannheimia succiniciproducens for succinic acid production[J].Applied & Environmental Microbiology, 2006, 72(3):1 939-1 948.
[13] 王乐, 倪子富, 惠明, 等.代谢控制发酵产琥珀酸研究进展[J].化工学报, 2015, 66(4):1 243-1 251.
WANG L, NI Z F, HUI M, et al. Research advances in metabolic control of succinic acid fermentation[J]. CIESC Journal, 2015, 66(4):1 243-1 251.
[14] 江镇海. 戊二酸的分离技术和经济效益评述[J].精细化工原料及中间体,2012(6):35-36.
JIANG Z H.Separation and economic benefits of glutaric acid[J].Fine Chemicals and Intermediates, 2012(6):35-36.
[15] PARK S J, KIM E Y, NOH W, et al.Metabolic engineering of Escherichia coli for the production of 5-aminovalerate and glutarate as C5 platform chemicals[J].Metabolic Engineering, 2013, 16:42-47.
[16] YU J L, XIA X X, ZHONG J J, et al.A novel synthetic pathway for glutarate production in recombinant Escherichia coli[J].Process Biochemistry, 2017, 59:161-171.
[17] LI W N, MA L, SHEN X L, et al.Targeting metabolic driving and intermediate influx in lysine catabolism for high-level glutarate production[J].Nature Communications, 2019, 10:3337.
[18] BURGARD A P, PHARKYA P, OSTERHOUT R E.Microorganisms for the production of adipic acid and other compounds:US9382556[P].2016-07-05.
[19] DICKINSON, R E, CICERONE R J.Future global warming from atmospheric trace gases[J].Nature, 1986, 319(6 049):109-115.
[20] 陈银生, 周亚明, 王霞.己二酸的各种生产工艺及污染物处理[J].皮革化工, 2005(3):30-34.
CHEN Y S, ZHOU Y M, WANG X. Producing processes of adipic acid and its pollutants treatment[J]. Leather Chemicals, 2005(3):30-34.
[21] 吴元庆. 产顺, 顺—粘康酸大肠杆菌遗传改造研究[D].天津:天津科技大学, 2013.
WU Y Q.The study modification of Escherichia coli for CIS,CIS-muconic acid production[D].Tianjin:Tianjin University of Science & Technology, 2013.
[22] CHENG Q, THOMAS S M, KOSTICHKA K, et al.Genetic analysis of a gene cluster for cyclohexanol oxidation in Acinetobacter sp.strain SE19 by in vitro transposition[J].Journal of Bacteriology, 2000, 182(17):4 744-4 751.
[23] BEARDSLEE T, PICATAGGIO S.Bio-based adipic acid from renewable oils[J].Lipid Technology, 2012, 24(10):223-225.
[24] PICATAGGIO S, BEARDSLEE T.Biological methods for preparing adipic acid:US8241879[P].2012-08-14.
[25] KUMMER R, MERGER F, BERTLEFF W, et al. Preparation of adipic acid: US4931590[P]. 1990-06-05.
[26] THYKAER J, CHRISTENSEN B,NIELSEN J.Metabolic network analysis of an adipoyl-7-ADCA-producing strain of Penicillium chrysogenum:Elucidation of adipate degradation[J].Metabolic Engineering, 2002, 4(2):151-158.
[27] YU J L, XIA X X, ZHONG J J, et al.Direct biosynthesis of adipic acid from a synthetic pathway in recombinant Escherichia coli[J].Biotechnology & Bioengineering, 2014, 111(12):2 580-2 586.
[28] CHEONG S, CLOMBURG J M, GONZALEZ R.Energy-and carbon-efficient synthesis of functionalized small molecules in bacteria using non-decarboxylative Claisen condensation reactions[J].Nature Biotechnology, 2016, 34(5):556-561.
[29] DENG Y, MAO Y.Production of adipic acid by the native-occurring pathway in Thermobifida fusca B6[J].Journal of Applied Microbiology, 2015, 119(4):1 057-1 063.
[30] ZHAO M, HUANG D X, ZHANG X J, et al.Metabolic engineering of Escherichia coli for producing adipic acid through the reverse adipate-degradation pathway[J].Metabolic Engineering, 2018,47:254-262.
[31] 林晓霖, 袁斌, 段博.庚二酸的研究进展[J].化工中间体, 2007(11):16-19.
LIN X L, YUAN B, DUAN B. Study on the development of the application of pimelic acid[J]. Chemical Intermediates, 2007(11):16-19.
[32] 谷志勇, 胡望明.壬二酸的制备及应用[J].精细石油化工, 1998(6):40-44.
GU Z Y, HU W M.Preperation and application of azelaic acid[J].Speciality Petrochemicals, 1998(6):40-44.
[33] 马建成, 夏清, 张凤宝, 等.蓖麻油裂解制癸二酸生产工艺研究进展[J].化学工业与工程, 2007(4):362-366.
MA J C, XIA Q, ZHANG F B, et al. Progress in the production of sebacic acid from Castor oil[J]. Chemical Industry and Engineering, 2007(4):362-366.
[34] ULEZLO I V, ROGOZIN I S.Search for yeast producers of brassylic and sebacic fatty acids[J].Applied Biochemistry and Microbiology, 2004, 40(5):460-462.
[1] 杨菊, 毛银, 黄晓强, 周胜虎, 邓禹. 计算设计改造Thermobifida fusca 5-羧基-2-戊烯酰-辅酶A还原酶促进己二酸生产[J]. 食品与发酵工业, 2021, 47(7): 1-7.
[2] 房峻, 周景文, 曾伟主. 高产α-酮戊二酸解脂亚洛酵母的选育及其发酵过程优化[J]. 食品与发酵工业, 2021, 47(2): 137-144.
[3] 张熙, 李国辉, 周胜虎, 毛银, 赵运英, 邓禹. 酿酒酵母异源合成己二酸[J]. 食品与发酵工业, 2020, 46(7): 1-9.
[4] 刘攀攀, 崔志勇, 王子坤, 张琴. 克雷伯氏菌发酵棉秆水解糖液产丁二酸的代谢特性[J]. 食品与发酵工业, 2020, 46(22): 8-13.
[5] 裴莹,孙玉波,黄斌. 双水相萃取分离α-酮戊二酸[J]. 食品与发酵工业, 2018, 44(12): 150-154.
[6] 薛宁,李智祥,战俊杰,赵磊,梁云龙,冯甲,刘涛,徐庆阳,张成林,陈宁. 敲除aceA和gogat及过表达gltA对谷氨酸棒状杆菌GKGD合成α-酮戊二酸的影响[J]. 食品与发酵工业, 2017, 43(8): 1-.
[7] 陈鹏程, 郑璞. 琥珀酸放线杆菌的固定化及利用纤维床反应器生产丁二酸的研究[J]. 食品与发酵工业, 2017, 43(12): 7-12.
[8] 卢正珂,史锋. 过表达mqo对重组谷氨酸棒杆菌L-异亮氨酸和4-羟基异亮氨酸合成的影响[J]. 食品与发酵工业, 2017, 43(10): 35-40.
[9] 查鑫华,郑璞,陈鹏程,魏哲. 以右旋糖酐发酵废液为原料发酵生产丁二酸[J]. 食品与发酵工业, 2016, 42(1): 7-.
[10] 陶生涛,郑璞,肖石山. 多酶组合水解甘蔗渣及利用甘蔗渣水解液发酵丁二酸[J]. 食品与发酵工业, 2014, 40(09): 12-16.
[11] 刘文颖,林峰,谷瑞增,鲁军,林单,蔡木易. 海洋胶原低聚肽的血管舒张和降胆固醇作用[J]. 食品与发酵工业, 2013, 39(12): 7-12.
[12] 周小兵,郑璞. 以白酒酒糟为原料发酵产丁二酸[J]. 食品与发酵工业, 2013, 39(02): 7-10.
[13] 李琪倩,李恒,陆震鸣,许泓瑜,方佳茂,许正宏,孙志浩,史劲松. 由L-精氨酸发酵液制备结晶型精酮合剂[J]. 食品与发酵工业, 2012, 38(12): 11-15.
[14] 郝晓然,牟聪华,乔旭光. 大蒜绿变过程中几种关键物质的变化规律[J]. 食品与发酵工业, 2012, 38(05): 81-85.
[15] 孔德城,郑璞,董晋军,倪晔,孙志浩. 碱预处理秸秆同步糖化发酵生产丁二酸[J]. 食品与发酵工业, 2011, 37(10): 1-5.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn