Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (21): 115-122    DOI: 10.13995/j.cnki.11-1802/ts.028393
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
普洱茶多糖对健康小鼠短链脂肪酸代谢与肠道菌群组成的调节作用
许凌凌1,2*, 程旺开1,2, 周小楠3
1(芜湖职业技术学院 生物工程学院,安徽 芜湖,241002)
2(芜湖市生命健康工程技术研究中心,安徽 芜湖,241000)
3(皖南医学院 基础医学院,安徽 芜湖,241003)
Regulatory effect of Pu-erh tea polysaccharide on short-chain fatty acid metabolism and gut microbiota in mice
XU Lingling1,2*, CHENG Wangkai1,2, ZHOU Xiaonan3
1(Biological Engineering Department, Wuhu Institute of Technology, Wuhu 241002, China)
2(Life and Health Engineering Research Center of Wuhu, Wuhu 241000, China)
3(Wannan Medical College, School of Basic Medicine, Wuhu 241003, China)
下载:  HTML  PDF (10257KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探究普洱茶多糖对健康小鼠肠道菌群组成的影响,并预测其代谢功能,以健康小鼠连续灌胃35 d,收集小鼠粪便进行分析。结果表明,普洱茶多糖能显著增加小鼠粪便中短链脂肪酸(乙酸、丙酸、丁酸和戊酸)的含量,但存在剂量依赖性。16S rRNA测序表明,补充300 mg/kg体重的普洱茶多糖能有效增加健康小鼠肠道菌群的多样性,并影响特定细菌的相对丰度。与对照组相比,粪杆菌属、拟普雷沃菌属、阿克曼氏菌属和另枝菌属被鉴定为高剂量普洱茶多糖组的生物标志物。此外,利用基于标记基因序列来预测功能丰度(phylogenetic investigation of communities by reconstruction of unobserved states,PICRUSt2),结果表明氨基酸代谢、能量代谢和其他次生代谢产物生物合成是高剂量普洱茶多糖组中主要富集的KEGG通路。阿克曼氏菌属与不饱和脂肪酸生物合成及类固醇生物合成呈正相关,与酮体的合成和降解呈负相关。研究结果表明,适量补充普洱茶多糖可以改变肠道菌群的组成,增加短链脂肪酸含量,从而改善肠道代谢功能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
许凌凌
程旺开
周小楠
关键词:  普洱茶  多糖  16S rRNA高通量测序  肠道菌群  短链脂肪酸    
Abstract: To explore the effect of Pu-erh tea polysaccharide (PEP) on gut microbiota and predict metabolic function, healthy mice were gavaged with PEP for 35 days. The results showed that PEP could remarkably increase the levels of short-chain fatty acids (acetic acid, propionic acid, butyric acid and valeric acid) in the feces with dose-dependent matter. 300 mg/kg body weight PEP was effective in increasing diversity of the gut microbiota and affected the relative abundance of specific bacteria. Faecalibaculum, Alloprevotella, Akkermansia and Alistipes were identified as the biomarkers of the PEP with high dose group. In addition, amino acid metabolism, energy metabolism and biosynthesis of other secondary metabolites were the primary enriched phenotypic KEGG pathways in the PEP with high dose group. Akkermansia positively correlated with biosynthesis of unsaturated fatty acids and steroid, and negatively correlated with synthesis and degradation of ketone bodies. These results suggested that the appropriate amount of PEP supplementation could enhance the content of short-chain fatty acids by altering the composition of gut microbiota and improve metabolic function.
Key words:  Pu-erh tea    polysaccharide    16S rRNA high-throughput sequencing    gut microbiota    short-chain fatty acid
收稿日期:  2021-06-17      修回日期:  2021-07-10           出版日期:  2021-11-15      发布日期:  2021-11-30      期的出版日期:  2021-11-15
基金资助: 安徽省教育厅高校优秀青年人才支持计划重点项目(gxyqZD2018101);芜湖职业技术学院校级自然科学研究重点项目(wzyzrzd202112)
作者简介:  硕士,副教授(通讯作者,E-mail:xulingling261@163.com)
引用本文:    
许凌凌,程旺开,周小楠. 普洱茶多糖对健康小鼠短链脂肪酸代谢与肠道菌群组成的调节作用[J]. 食品与发酵工业, 2021, 47(21): 115-122.
XU Lingling,CHENG Wangkai,ZHOU Xiaonan. Regulatory effect of Pu-erh tea polysaccharide on short-chain fatty acid metabolism and gut microbiota in mice[J]. Food and Fermentation Industries, 2021, 47(21): 115-122.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.028393  或          http://sf1970.cnif.cn/CN/Y2021/V47/I21/115
[1] CONLON M A,BIRD A R.The impact of diet and lifestyle on gut microbiota and human health[J].Nutrients,2015,7(1):17-44.
[2] SINGH R K,CHANG H W,YAN D,et al.Influence of diet on the gut microbiome and implications for human health[J].Journal of Translational Medicine,2017,15(1):73.
[3] 杨若言, 张帆,靳镓熙,等.饮食与肠道菌群关系的研究进展[J].中国微生态学杂志,2020,32(9):1 113-1 116.
YANG R Y,ZHANG F,JIN J X,et al.Advances in research on relationship between diet and gut microbiota[J].Chinese Journal of Microecology,2020,32(9):1 113-1 116.
[4] DO M H,SEO Y S,PARK H Y.Polysaccharides:Bowel health and gut microbiota[J].Critical Reviews in Food Science and Nutrition,2021,61(7):1 212-1 224.
[5] 张羡媛, 李继安,陈代杰.饮食、肠道微生物与代谢性疾病[J].世界临床药物,2015,36(2):135-138.
ZHANG X Y,LI J A,CHEN D J.Diet,gut microbes and metabolic diseases[J].World Clinical Drugs,2015,36(2):135-138.
[6] HUANG L X,SHEN M Y,WU T,et al.Mesona chinensis Benth polysaccharides protect against oxidative stress and immunosuppression in cyclophosphamide-treated mice via MAPKs signal transduction pathways[J].International Journal of Biological Macromolecules,2020,152:766-774.
[7] NIE Y,LIN Q L,LUO F J.Effects of non-starch polysaccharides on inflammatory bowel disease[J].International Journal of Molecular Sciences,2017,18(7):1 372-1 395.
[8] ZHAO F Q,LIU Q B,CAO J,et al.A sea cucumber (Holothuria leucospilota) polysaccharide improves the gut microbiome to alleviate the symptoms of type 2 diabetes mellitus in Goto-Kakizaki rats[J].Food and Chemical Toxicology,2020,135:110 886.
[9] 郭刚军, 彭春秀,何享,等.云南普洱茶不同溶剂提取物抗氧化活性研究[J].热带作物学报,2013,34(1):151-156.
GUO G J,PENG C X,HE X,et al.Antioxidant activity of different solvent extracts of Yunnan Pu-erh tea[J].Chinese Journal of Tropical Crops,2013,34(1):151-156.
[10] 杨新河, 黄建安,刘仲华,等.树脂对普洱茶多糖的纯化与分离[J].食品科学 2015,36(2):19-24.
YANG X H,HUANG J A,LIU Z H,et al.Purification and separation of Pu-erh tea polysaccharide by resin[J].Food Science,2015,36(2):19-24.
[11] 王媛, 荣华,初晓辉,等.普洱茶提取物及普洱茶多糖对人成纤维细胞抗衰老作用机制研究[J].云南农业大学学报(自然科学),2015,30(2):219-227.
WANG Y,RONG H,CHU X H,et al.Effects of natural antioxidant extracts on the molecular mechanism of anti-aging in HDF[J].Journal of Yunnan Agricultural University (Natural Science),2015,30(2):219-227.
[12] 吕海鹏, 王梦琪,张悦,等.普洱茶后发酵过程中多酚类成分生物转化的研究进展[J].食品科学,2018,39(23):306-312.
LYU H P,WANG M Q,ZHANG Y,et al.Recent advances in research on biotransformation of polypheonls during Pu-erh tea pile fermentation[J].Food Science,2018,39(23):306-312.
[13] 李沫. 普洱茶通过作用于肠道菌群从而对糖尿病前期患者糖脂代谢影响的机制研究[D].长春:吉林大学,2020.
LI M.Mechanism of Puer tea improving glucose and lipid metabolism in pre-diabetic patients by effecting on intestinal microflora[D].Changchun:Jilin University,2020.
[14] 蒋成砚, 谢昆,薛春丽,等.普洱茶多糖增强免疫功能研究[J].江苏农业科学,2012,40(1):257-258.
JIANG C Y,XIE K,XUE C L,et al.Study on enhancing immune function of Pu-erh tea polysaccharide[J].Jiangsu Agricultural Sciences,2012,40(1):257-258.
[15] 董亮, 胡丽,马懿.丙酮沉淀法提取普洱茶多糖工艺的响应面分析[J].食品工业,2020,41(2):22-25.
DONG L,HU L,MA Y.Response surface analysis of the technology for extracting polysaccharides from Pu’er tea by acetone precipitation[J].The Food Industry,2020,41(2):22-25.
[16] 王洪善, 张晓娟,李恒,等.甘露寡糖对高脂饮食小鼠的益生作用[J].食品与发酵工业,2018,44(11):63-68.
WANG H S,ZHANG X J,LI H,et al.Prebiotic effects of mannan-oligosaccharide on high fat diet mice[J].Food and Fermentation Industries,2018,44(11):63-68.
[17] BOLYEN E,RIDEOUT J R,DILLON M R,et al.Reproducible,interactive,scalable and extensible microbiome data science using QIIME 2[J].Nature Biotechnology,2019,37(8):852-857.
[18] DOUGLAS G M,MAFFEI V J,ZANEVELD J R,et al.PICRUSt2 for prediction of metagenome functions[J].Nature Biotechnology,2020,38(6):685-688.
[19] WU T,SHEN M Y,YU Q,et al.Cyclocarya paliurus polysaccharide improves metabolic function of gut microbiota by regulating short-chain fatty acids and gut microbiota composition[J].Food Research International,2021,141(2):110 119.
[20] WANG Z,ZHANG X X,ZHU L L,et al.Inulin alleviates inflammation of alcoholic liver disease via SCFAs-inducing suppression of M1 and facilitation of M2 macrophages in mice[J].International Immunopharmacology,2020,78(3):106062.
[21] GEORGE J,SABAPATHI S N.Cellulose nanocrystals:Synthesis,functional properties,and applications[J].Nanotechnology Science and Applications,2015,8:45-54.
[22] TACHON S,ZHOU J E,KEENAN M,et al.The intestinal microbiota in aged mice is modulated by dietary resistant starch and correlated with improvements in host responses[J].FEMS Microbiology Ecology,2013,83(2):299-309.
[23] UPADHYAYA B,MCCORMACK L,FARDIN-KIA A R,et al.Impact of dietary resistant starch type 4 on human gut microbiota and immunometabolic functions[J].Scientific Reports,2016,6(1):28 797.
[24] KONG C,GAO R Y,YAN X B,et al.Probiotics improve gut microbiota dysbiosis in obese mice fed a high-fat or high-sucrose diet[J].Nutrition,2019,60(9):175-184.
[25] SHEN F,ZHENG R D,SUN X Q,et al.Gut microbiota dysbiosis in patients with non-alcoholic fatty liver disease[J].Hepatobiliary & Pancreatic Diseases International,2017,16(4):375-381.
[26] 陈贵杰. 茯砖茶及其多糖调节脂代谢及肠道微生物活性的研究[D].南京:南京农业大学,2018.
CHEN G J.The modulation of metabolic syndrome and gut microbiota by Fuzhuan brick tea and its polysaccharides[D].Nanjing:Nanjing Agricultural University,2018.
[27] 王晨, 朝浩鹏,谢宇端.菊粉对高脂高糖饮食诱导肥胖小鼠的减肥作用与其调节肠道菌群的关系分析[J].安徽医药,2020,24(4):666-670.
WANG C,CHAO H P,XIE Y D.Anti-obesity effect of inulin on obesity mice induced by high-fat and high-glucose diet and its relationship with regulating intestinal floras[J].Anhui Medical and Pharmaceutical Journal,2020,24(4):666-670.
[28] 杨玉辉. 蛋氨酸限制饮食对肥胖小鼠代谢的影响及其降脂机理的研究[D].无锡:江南大学,2019.
YANG Y H.Study on the metabolic effects and lipid-lowering mechanism of methionine restriction in obese mice[D].Wuxi:Jiangnan University,2019.
[1] 史瑛, 冯欣静, 周志磊, 姬中伟, 徐岳正, 毛健. 黄酒多糖对炎症性肠病及便秘作用机制的研究进展[J]. 食品与发酵工业, 2021, 47(9): 275-283.
[2] 刘志芳, 赵前程, 刘志东, 段蕊, 林娜, 张俊杰. 贝类多糖研究进展[J]. 食品与发酵工业, 2021, 47(9): 299-306.
[3] 贾叶, 包斌, 马明, 魏婷. 蚕蛹蛋白源肠内营养混悬剂对二型糖尿病小鼠肠道菌的影响[J]. 食品与发酵工业, 2021, 47(8): 62-66.
[4] 周雯, 庄蕾, 吴森. 植物多糖在Ⅱ型糖尿病降血糖作用方面的研究进展[J]. 食品与发酵工业, 2021, 47(8): 290-296.
[5] 姚丽文, 周宇芳, 孙继鹏, 王家星, 廖妙飞, 郑斌, 王芮, 邓尚贵, 相兴伟. 厚壳贻贝多糖对葡聚糖硫酸钠诱导的结肠炎改善作用[J]. 食品与发酵工业, 2021, 47(7): 109-115.
[6] 顾欣, 高涛, 刘梦雅, 丛之慧, 张诚雅, 肖乐艳, 李迪, 胡景涛. 梁平柚柚皮多糖的提取、结构解析及抗氧化能力研究[J]. 食品与发酵工业, 2021, 47(7): 137-145.
[7] 刘婷, 周欣, 赵超, 龚小见, 陈华国. 植物多糖对肾损伤干预效果及作用机制研究进展[J]. 食品与发酵工业, 2021, 47(7): 269-277.
[8] 王路, 张蕾, 郑皎碧, 王琼熠, 范辉. 发酵制品调控糖脂代谢性疾病作用机制的研究进展[J]. 食品与发酵工业, 2021, 47(7): 292-300.
[9] 朱慧越, 邹仁英, 许梦舒, 王琳琳, 田培郡, 陈卫, 王刚. 短链脂肪酸-酰化淀粉对小鼠抑郁样行为的缓解及机制[J]. 食品与发酵工业, 2021, 47(6): 26-33.
[10] 张晓晓, 柴智, 冯进, 崔莉, 李春阳, 李莹, 黄午阳. 牛蒡多糖的提取及生物活性研究进展[J]. 食品与发酵工业, 2021, 47(6): 280-288.
[11] 李梦钰, 刘会平, 贾琦, 吴亚茹. 天冬多糖理化性质和流变学特性研究[J]. 食品与发酵工业, 2021, 47(5): 48-56.
[12] 吴唯娜, 冯洁茹, 方静宇, 邵平, 孙培龙, 徐靖, 李振皓. 铁皮石斛酶解多糖对姜黄素乳液功能性质的影响[J]. 食品与发酵工业, 2021, 47(5): 63-70.
[13] 杨燕敏, 郑振佳, 高琳, 张砚垒, 张仁堂. 红枣多糖超声波提取、结构表征及抗氧化活性评价[J]. 食品与发酵工业, 2021, 47(5): 120-126.
[14] 殷娴, 邵蕾娜, 廖永红, 王凤寰. 微生物富集有机硒研究进展[J]. 食品与发酵工业, 2021, 47(5): 259-266.
[15] 彭明芳, 李培骏, 单杨, 陈玉秋, 杨岱峻, 雷丽嫦, 黄芝辉, 余孔新. 比较基因组揭示广西酸菜乳杆菌碳水化合物活性酶谱[J]. 食品与发酵工业, 2021, 47(4): 68-73.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn