Please wait a minute...
 
 
食品与发酵工业  2022, Vol. 48 Issue (15): 243-248    DOI: 10.13995/j.cnki.11-1802/ts.028624
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
真空结合加热、冷冻浓缩羊奶理化品质分析
朱丽, 李林强, 鱼喆喆, 刘永峰*
(陕西师范大学 食品工程与营养科学学院,陕西 西安,710062)
Physicochemical quality of goat milk concentrated by vacuum combined with heating and freezing
ZHU Li, LI Linqiang, YU Zhezhe, LIU Yongfeng*
(College of food engineering and nutritional science, Shaanxi Normal University, Xi’an 710062, China)
下载:  HTML  PDF (2066KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 该文探究了加热、真空加热和真空冷冻3种浓缩方法对羊奶理化品质(pH、浊度、色值、粒度、酪蛋白二级结构和脂肪球)的影响。结果表明,25%总固形物含量中,3种浓缩羊奶的pH、浊度、粒度、酪蛋白二级结构较鲜羊奶有显著差异(P<0.05),真空加热和加热浓缩羊奶脂肪球变大但真空冷冻浓缩羊奶的脂肪球无明显变化;真空冷冻浓缩羊奶较加热、真空加热浓缩羊奶的粒度、脂肪球、酪蛋白二级结构和浊度变化显著(P<0.05),真空冷冻浓缩对羊奶色差的影响最小;35%总固形含量中,3种浓缩羊奶的浊度、色差、pH值较鲜羊奶有显著变化(P<0.05),加热浓缩羊奶粒度比鲜羊奶增大33.90%(P<0.05),但其他2种浓缩羊奶无显著变化(P>0.05),真空加热浓缩羊奶酪蛋白二级结构无显著变化(P>0.05);真空冷冻浓缩羊奶浊度、色差、粒度、酪蛋白二级结构较其他2种羊奶均发生显著变化(P<0.05),脂肪球小于其他2种羊奶。因此,25%总固形物浓缩羊奶理化品质优于35%固形物浓缩羊奶,且含25%固形物的真空冷冻浓缩羊奶较其他浓缩羊奶品质最好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱丽
李林强
鱼喆喆
刘永峰
关键词:  浓缩方法  羊奶  理化品质  加热  冷冻    
Abstract: To compare the quality of goat milk by different concentrated methods, this paper explored the effect of vacuum combined heating or frozen concentrated methods on the physicochemical quality of goat milk (pH value, turbidity, color value, particle size, and secondary structure of casein and fat globule). The results showed that when the total solids were 25%, the pH value, turbidity, color value, particle size and casein secondary structure of three concentrated goat milk changed significantly (P<0.05). The fat globules of heated and vacuum heated concentrated goat milk became larger, while the fat globules of vacuum frozen concentrated goat milk did not change significantly. Particle size, fat globules, casein secondary structure and turbidity of vacuum frozen concentrated goat milk changed significantly compared with heating and vacuum heating concentrated goat milk(P<0.05), and vacuum frozen concentrated method had the least effect on goat milk color difference. When the total solids were 35%, the turbidity, color difference and pH value of the three concentrated goat milk changed significantly (P<0.05). The particle size of heated concentrated goat milk increased by 33.90% compared to fresh goat milk (P<0.05), but there was no significant change in the other two concentrated goat milk (P>0.05). There was no significant changed in casein secondary structure of vacuum heated concentrated goat milk(P>0.05). The turbidity, color difference, particle size and casein secondary structure of vacuum frozen concentrated goat milk were changed significantly compared with the other two types of goat milk(P<0.05), and fat globules less than the other two goat milk. Therefore, the quality of with goat milk of 25% total solids was better than that of 35% total solids, and the vacuum frozen condensed goat milk with 25% total solids concentrated level was better than other concentrated goat milk.
Key words:  concentrated methods    goat milk    physicochemical quality    heating    freezing
收稿日期:  2021-07-14      修回日期:  2021-08-23           出版日期:  2022-08-15      发布日期:  2022-09-02      期的出版日期:  2022-08-15
基金资助: 陕西省重点研发计划项目(2019ZDLNY06-05,2022ZDLNY04-09);陕西省咸阳市科技项目(2021ZDZX-NY-0014);陕西省林业科学院创新团队建设项目(SXLk2020-0303)
作者简介:  第一作者:硕士研究生(刘永峰教授为通信作者,E-mail:yongfeng200@126.com)
引用本文:    
朱丽,李林强,鱼喆喆,等. 真空结合加热、冷冻浓缩羊奶理化品质分析[J]. 食品与发酵工业, 2022, 48(15): 243-248.
ZHU Li,LI Linqiang,YU Zhezhe,et al. Physicochemical quality of goat milk concentrated by vacuum combined with heating and freezing[J]. Food and Fermentation Industries, 2022, 48(15): 243-248.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.028624  或          http://sf1970.cnif.cn/CN/Y2022/V48/I15/243
[1] 史怀平, 罗军, 党立峰, 等.山羊奶的营养成分及营养价值的提高途径[J].黑龙江畜牧兽医, 2017(9):118-122.SHI H P, LUO J, DANG L F, et al.Review on improvement approaches of nutrition composition and nutritional value in goat milk[J].Heilongjiang Animal Science and Veterinary Medicine, 2017(9):118-122.
[2] 高佳媛, 邵玉宇, 王毕妮, 等.羊奶及其制品的研究进展[J].中国乳品工业, 2017, 45(1):34-38.GAO J Y, SHAO Y Y, WANG B N, et al.Research development of goat milk and its products[J].China Dairy Industry, 2017, 45(1):34-38.
[3] BALDE A, AIDER M.Impact of sterilization and storage on the properties of concentrated skim milk by cryoconcentration in comparison with vacuum evaporation and reverse osmosis concentration[J].Journal of Food Process Engineering, 2019, 42(5):e13130.
[4] GRAF B, HEHNKE S, NEUWIRTH M, et al.Continuous microwave heating to inactivate thermophilic spores in heating-sensitive skim milk concentrate[J].International Dairy Journal, 2021, 113:104894.
[5] 步营, 胡显杰, 刘瑛楠, 等.两种浓缩方式对扇贝蒸煮液色泽及挥发性风味物质的影响[J].中国调味品, 2019, 44(12):12-17.BU Y, HU X J, LIU Y N, et al.Effects of two concentration methods on the color and volatile flavor compounds of scallop cooking liquor[J].China Condiment, 2019, 44(12):12-17.
[6] PETZOLD G, ORELLANA P, MORENO J, et al.Vacuum-assisted block freeze concentration applied to wine[J].Innovative Food Science & Emerging Technologies, 2016, 36:330-335.
[7] 秦贯丰, 丁中祥, 原姣姣, 等.苹果汁冷冻浓缩与真空蒸发浓缩效果的对比[J].食品科学, 2020, 41(7):102-109.QIN G F, DING Z X, YUAN J J, et al.Comparative experimental study on freeze concentration and vacuum evaporation concentration of apple juice[J].Food Science, 2020, 41(7):102-109.
[8] ZHAO L L, ZHANG S W, LU J, et al.Effects of heat treatment and stabilizing salts supplementation on the physicochemical properties, protein structure and salts balance of goat milk[J].LWT, 2020, 132:109878.
[9] ZHAO X, CHENG M, ZHANG X X, et al.The effect of heat treatment on the microstructure and functional properties of whey protein from goat milk[J].Journal of Dairy Science, 2020, 103(2):1 289-1 302.
[10] TRIBST A A L, FALCADE L T P, CARVALHO N S, et al.Using physical processes to improve physicochemical and structural characteristics of fresh and frozen/thawed sheep milk[J].Innovative Food Science & Emerging Technologies, 2020, 59:102247.
[11] MARKOSKA T, HUPPERTZ T, GREWAL M K, et al.FTIR analysis of physiochemical changes in raw skim milk upon concentration[J].LWT, 2019, 102:64-70.
[12] 孙静丽. 不同热处理对乳蛋白理化性状影响[D].西安:陕西师范大学, 2018.SUN J L.Effects of different heat treatment on the physicochemical properties of milk protein[D].Xi’an:Shaanxi Normal University, 2018.
[13] YU Z Z, QIAO C Y, ZHANG X R, et al.Screening of frozen-thawed conditions for keeping nutritive compositions and physicochemical characteristics of goat milk[J].Journal of Dairy Science, 2021, 104(4):4 108-4 118.
[14] PARMAR P, SINGH A K, MEENA G S, et al.Application of ohmic heating for concentration of milk[J].Journal of Food Science and Technology, 2018, 55(12):4 956-4 963.
[15] 陈聪, 胡长利, 谢晶.浓缩与冻结方式对牛乳品质的影响[J].食品与发酵工业, 2021, 47(1):214-221.CHEN C, HU C L, XIE J.Effects of concentrating and freezing methods on milk quality[J].Food and Fermentation Industries, 2021, 47(1):214-221.
[16] VASBINDER A J, DE KRUIF C G.Casein-whey protein interactions in heated milk:The influence of pH[J].International Dairy Journal, 2003, 13(8):669-677.
[17] 刘永峰, 鱼喆喆, 申倩, 等.冻融对牛奶酸度、色泽与营养成分的变化研究[J].陕西师范大学学报(自然科学版), 2021, 49(3):51-59.LIU Y F, YU Z Z, SHEN Q, et al.The changes of acidity, color and nutritional composition in frozen-thawed raw milk[J].Journal of Shaanxi Normal University (Natural Science Edition), 2021, 49(3):51-59.
[18] SOLAH V A, STAINES V, HONDA S, et al.Measurement of milk color and composition:Effect of dietary intervention on western Australian Holstein-Friesian cow’s milk quality[J].Journal of Food Science, 2007, 72(8):S560-S566.
[19] RAGAB E S, LU J, PANG X Y, et al.Effect of thermosonication process on physicochemical properties and microbial load of goat’s milk[J].Journal of Food Science and Technology, 2019, 56(12):5 309-5 316.
[20] 迟雪露, 仝令君, 潘明慧, 等.乳脂肪含量对牛乳理化性质的影响[J].食品科学, 2018, 39(4):26-31.CHI X L, TONG L J, PAN M H, et al.Effect of fat content on physicochemical properties of milk[J].Food Science, 2018, 39(4):26-31.
[21] 赵悦, 李林强, 牛鹏飞.牛奶中5-HMF的RP-HPLC测定方法优化[J].江苏农业学报, 2020, 36(3):798-800.ZHAO Y, LI L Q, NIU P F.Optimization of reverse-phase high-performance liquid chromatography(RP-HPLC) method for determination of 5-hydroxymethylfurfural in milk[J].Jiangsu Journal of Agricultural Sciences, 2020, 36(3):798-800.
[22] 孙佳悦, 钱方, 姜淑娟, 等.基于红外光谱分析热处理对牛乳蛋白质二级结构的影响[J].食品科学, 2017, 38(23):82-86.SUN J Y, QIAN F, JIANG S J, et al.Effect of heat treatments on the secondary structure of milk proteins analyzed by Fourier transform infrared spectroscopy[J].Food Science, 2017, 38(23):82-86.
[23] YE M P, ZHOU R, SHI Y R, et al.Effects of heating on the secondary structure of proteins in milk powders using mid-infrared spectroscopy[J].Journal of Dairy Science, 2017, 100(1):89-95.
[24] 杨静洁, 张波, 张影全, 等.冷冻温度对非发酵面团蛋白质结构及面团特性的影响[J].中国粮油学报, 2020, 35(5):11-17.YANG J J, ZHANG B, ZHANG Y Q, et al.Effect of freezing temperature on protein structure and dough properties of non-fermented dough[J].Journal of the Chinese Cereals and Oils Association, 2020, 35(5):11-17.
[25] WIKING L, STAGSTED J, BJÖRCK L, et al.Milk fat globule size is affected by fat production in dairy cows[J].International Dairy Journal, 2004, 14(10):909-913.
[1] 杨哪, 周宇益, 黄文哲, 王干一, 张晶平, 白莹, 魏建, 周思健, 徐学明. 静磁场辅助冷藏对草菇采后品质的影响[J]. 食品与发酵工业, 2022, 48(9): 195-200.
[2] 赵愉涵, 袁丽雪, 王敏, 孙斐, 韩聪, 陈庆敏, 岳凤丽, 崔波, 傅茂润. 不同干燥方式对芹菜叶品质的影响[J]. 食品与发酵工业, 2022, 48(8): 205-211.
[3] 李衡, 王平, 刘妍, 苏茸, 刘永峰. 陕西生鲜羊奶及其加工羊奶粉品质调研分析及相关性研究[J]. 食品与发酵工业, 2022, 48(4): 90-96.
[4] 余妙灵, 包斌. 中国婴幼儿配方乳粉产品标准与配方发展趋势[J]. 食品与发酵工业, 2022, 48(4): 314-320.
[5] 易军鹏, 贺健, 李欣, 段续, 任广跃, 吴甜甜, 董晶寅. 微波真空冷冻干燥对酸菜品质及微生物活性的影响[J]. 食品与发酵工业, 2022, 48(3): 191-197.
[6] 黄峻榕, 马珂莹, 蒲华寅, 伏佳静, 邝吉卫. 面团冻藏对陕西Biangbiang面条品质变化的影响[J]. 食品与发酵工业, 2022, 48(2): 79-85.
[7] 于晴, 李雪琴. 菊粉对冷冻熟面冻藏品质的影响[J]. 食品与发酵工业, 2022, 48(15): 214-221.
[8] 朱凯阳, 任广跃, 段续, 李琳琳, 仇彩霞. 不同干燥方式对新鲜花生营养成分、理化特性及能耗的影响[J]. 食品与发酵工业, 2022, 48(15): 230-236.
[9] 寇佳祥, 乔建军, 朱宏吉, 吴昊, 张悦. 提高乳杆菌属冷冻干燥存活率研究进展[J]. 食品与发酵工业, 2022, 48(13): 296-303.
[10] 孙康, 李军, 张鸣宇, 朱凤妹, 葛超, 阎贺静. 美极梅奇酵母冷冻干燥复合保护剂的优化研究[J]. 食品与发酵工业, 2022, 48(11): 73-79.
[11] 马东林, 郭全友, 李保国, 冯广朋, 杨絮, 王海华, 姜朝军, 马本贺. 香糟大鲵冷冻调理制品工艺优化及滋味评价[J]. 食品与发酵工业, 2022, 48(10): 140-148.
[12] 阳景阳, 罗莲凤, 骆妍妃, 陈远权, 李子平, 冯红钰, 覃宏宇, 韦锦坚. 桂热2号红茶冷冻干燥关键技术研究及品质评价[J]. 食品与发酵工业, 2021, 47(20): 97-104.
[13] 王雪松, 谢晶. 竹荚鱼浸渍冻结液配方的优化与应用效果[J]. 食品与发酵工业, 2021, 47(19): 195-200.
[14] 颜廷才, 王前菊, 段肖杰, 贲爱玲, 陈守江, 李所彬, 王海鸥. 三种干燥方法对榴莲游离氨基酸和可溶性糖的影响[J]. 食品与发酵工业, 2021, 47(14): 137-144.
[15] 周葵, 洪雁, 梁尚云, 张雅媛, 游向荣, 李明娟, 卫萍, 王颖. 富硒大米粉预糊化及其复配代餐粉的研制[J]. 食品与发酵工业, 2021, 47(1): 186-192.
[1] JU Ning et al. Isolation, screening and analysis of aroma components of non-Saccharomyces for wolfberry wine[J]. Food and Fermentation Industries, 2017, 43(11): 125 .
[2] Pan Hongyang,Wang Shuying,Mo Haizhen. Determination of Seleno-amino Acids in Enriched-selenium Dehydrated Brassica Chinensis by RHPLC[J]. Food and Fermentation Industries, 2008, 34(10): 141 .
[3] Chen Mo,Wang Zhiwei,Hu Changying,Wu Xiyang,Wang Pingli. Rapid Evaluating of Antimicrobial Activity of Vanillin with the Microplate Reader in 96-cell Plate[J]. Food and Fermentation Industries, 2009, 35(5): 63 .
[4] WANG Kai-li et al. Effect of fermentation process on quality of fermented grains jujube biscuit[J]. Food and Fermentation Industries, 2018, 44(6): 106 -114 .
[5] LI Meng-di, ZHANG Zhi-meng, DONG Zi-xing, TIAN Kang-ming, JIN Peng, LIU Xiao-guang, WANG Zheng-xiang. Cloning, expression and biochemical characterization of tannase TahA from Aspergillus niger[J]. Food and Fermentation Industries, 2018, 44(11): 15 -21 .
[6] TANG Chao, ZHANG Hanyu, WANG Ting, FENG Guangwen, QIAN Weidong, CAI Changlong, MAO Peihong. Differentiating transcriptomic patterns and functional analysis of Hansenula anomala during cultivation[J]. Food and Fermentation Industries, 2019, 45(4): 1 -6 .
[7] PENG Yuanyuan, WU Xuan, TAO Xiaoqi. Quantitative detection of meat adulteration by real-time fluorescent PCR[J]. Food and Fermentation Industries, 2019, 45(15): 279 -287 .
[8] LIU Fang, YANG Kangzhuo, ZHANG Jianmin, HE Zhanglan, PENG Zhiyun, ZHENG Jia. Classification of strong-flavor Baijiu using electronic nose and GC-MStechnologies[J]. Food and Fermentation Industries, 2020, 46(2): 73 -78 .
[9] CHU Qianqian, HAN Qiuyu, CHEN Biwen, BAO Bin. Determination of free amino group content of protein using trinitrobenzenesulfonic acid (TNBS) method[J]. Food and Fermentation Industries, 2020, 46(6): 275 -279 .
[10] LIU Xiangyu, QIN Xiaoli, ZHONG Jinfeng. Effect of temperature on the stability of lactoglobulin: a molecular dynamics simulation[J]. Food and Fermentation Industries, 2020, 46(7): 89 -96 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn