Please wait a minute...
 
 
食品与发酵工业  2022, Vol. 48 Issue (7): 14-21    DOI: 10.13995/j.cnki.11-1802/ts.029014
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
营养胁迫对粪肠球菌Gr17细菌素合成的调控
段娇娇, 聂蓉, 刘国荣*, 王昭, 朱泽康
(北京食品营养与人类健康高精尖创新中心 北京市食品添加剂工程技术研究中心 北京工商大学,北京,100048)
Regulation of bacteriocin synthesis in Enterococcus faecalis Gr17 under nutritional stress
DUAN Jiaojiao, NIE Rong, LIU Guorong*, WANG Zhao, ZHU Zekang
(Beijing Advanced Innovation Center for Food Nutrition and Human Health,Beijing Engineering and Technology Research Center of Food Additives,Beijing Technology and Business University,Beijing 100048,China)
下载:  HTML  PDF (2940KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 粪肠球菌Gr17(Enterococcus faecalis Gr17)是从白酒酒醅中分离的高产细菌素的菌株,该研究以Gr17为研究对象,筛选可正向调控细菌素合成的营养胁迫条件,并初步探究该条件正向调控细菌素合成的具体机制。以MRS培养基为对照,测定在1/4 MRS、1/2 MRS和3/4 MRS的营养胁迫条件下,该菌生长及细菌素产量的变化,并采用实时定量聚合酶链式反应(real-time quantitative polymerase chain reaction,RT-qPCR)测定群体感应调控中与细菌素合成相关基因的表达水平。结果表明,随初始营养物质的减少,菌体生长密度减小。但发现1/4 MRS的胁迫条件下菌株细菌素产量显著上升。RT-qPCR结果显示,在1/4 MRS的胁迫条件下,细菌素结构基因ent Ient Jent Gr17,ABC转运系统调节基因AS-48EAS-48FAS-48GAS-48H,自诱导肽基因AIP以及双组分调节基因hpkrr的表达均显著上调(P<0.05)。因此,营养胁迫对粪肠球菌Gr17的生长不利,但1/4 MRS的胁迫条件可正向调控细菌素合成,且受群体感应系统调控。该研究期望为营养胁迫对细菌素合成的调控机制相关研究提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
段娇娇
聂蓉
刘国荣
王昭
朱泽康
关键词:  营养胁迫  粪肠球菌  细菌素  群体感应  调控    
Abstract: Enterococcus faecalis Gr17, a high bacteriocin-producing strain, was isolated from fermented grains of Baijiu. To screen nutritional stress conditions that can positively regulate bacteriocin production and preliminarily explored the specific mechanism of the regulation, the growth and bacteriocin production of the strain under the nutritional stress of 1/4 MRS, 1/2 MRS and 3/4 MRS were measured, and MRS was served as control. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to measure the expression level of genes related to bacteriocin synthesis in quorum sensing regulation. The results showed the cell growth density decreased with the decrease of initial nutrients, while bacteriocin production of strain Gr17 significantly enhanced under the stress condition of 1/4 MRS. RT-qPCR results showed that under the stress of 1/4 MRS, the expression of bacteriocin structural genes ent I, ent J and ent Gr17, ABC transport system regulatory genes AS-48E, AS-48F, AS-48G and AS-48H, self-induced peptide gene AIP and two-component regulatory genes hpk and rr were significantly increased (P<0.05). Therefore, although nutritional stress is unfavorable to the growth of E.faecalis Gr17, the stress condition of 1/4 MRS can enhance bacteriocin production and quorum sensing system is involved in the regulation. The results provide reference for the research on the regulation mechanism of bacteriocin synthesis under nutritional stress.
Key words:  nutritional stress    Enterococcus faecalis    bacteriocin    quorum sensing    regulation
收稿日期:  2021-08-14      修回日期:  2021-10-20           出版日期:  2022-04-15      发布日期:  2022-04-27      期的出版日期:  2022-04-15
基金资助: 国家自然科学基金面上项目(31871772);北京市自然科学基金面上项目(6192003);2021年北京工商大学食品科学与工程高精尖学科项目;北京工商大学2021年研究生科研能力提升计划项目
作者简介:  硕士研究生(刘国荣教授为通信作者,E-mail:liuguorong@th.btbu.edu.cn)
引用本文:    
段娇娇,聂蓉,刘国荣,等. 营养胁迫对粪肠球菌Gr17细菌素合成的调控[J]. 食品与发酵工业, 2022, 48(7): 14-21.
DUAN Jiaojiao,NIE Rong,LIU Guorong,et al. Regulation of bacteriocin synthesis in Enterococcus faecalis Gr17 under nutritional stress[J]. Food and Fermentation Industries, 2022, 48(7): 14-21.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.029014  或          http://sf1970.cnif.cn/CN/Y2022/V48/I7/14
[1] SILVA C C G,SILVA S P M,RIBEIRO S C.Application of bacteriocins and protective cultures in dairy food preservation[J].Frontiers in Microbiology,2018,9:594.
[2] JAWAN R,ABBASILIASI S,TAN J S,et al.Influence of culture conditions and medium compositions on the production of bacteriocin-like inhibitory substances by Lactococcus lactis Gh1[J].Microorganisms,2020,8(10):1454.
[3] LIU G R,WANG Y,LI X,et al.Genetic and biochemical evidence that Enterococcus faecalis Gr17 produces a novel and sec-dependent bacteriocin,enterocin Gr17[J].Frontiers in Microbiology,2019,10:1806.
[4] FIOCCO D,LONGO A,ARENA M P,et al.How probiotics face food stress:they get by with a little help[J].Critical Reviews in Food Science and Nutrition,2020,60(9):1 552-1 580.
[5] ENGELHARDT T,ALBANO H,KISKÓ G,et al.Antilisterial activity of bacteriocinogenic Pediococcus acidilactici HA6 111-2 and Lactobacillus plantarum ESB 202 grown under pH and osmotic stress conditions[J].Food Microbiology,2015,48:109-115.
[6] SCHOTT A S,BEHR J,GEIßLER A J,et al.Quantitative proteomics for the comprehensive analysis of stress responses of Lactobacillus paracasei subsp.paracasei F19[J].Journal of Proteome Research,2017,16(10):3 816-3 829.
[7] LIU S L,MA Y M,ZHENG Y,et al.Cold-stress response of probiotic Lactobacillus plantarum K25 by iTRAQ proteomic analysis[J].Journal of Microbiology and Biotechnology,2020,30(2):187-195.
[8] 马佳歌,姜瞻梅,姜瑞,等.营养胁迫植物乳杆菌KLDS 1.0328的生理特性及其冷冻干燥菌粉贮存稳定性分析[J].食品科学,2021,42(22):155-161.MA J G,JIANG Z M,JIANG R,et al.Physiological characteristics of nutrient stressed Lactobacillus plantarum KLDS 1.0328 and storage stability of its freeze-dried cells[J].Food Science,2021,42(22):155-161.
[9] KUMAR K N,DEVADAS S M,MURUGAN S,et al.Production and characterization of bacteriocin by lactic acid bacterium-Pediococcus pentosaceus NKSM1 isolated from fermented ‘appam' batter[J].Journal of Pure and Applied Microbiology,2018,12(3):1 315-1 330.
[10] VERLUYTEN J,LEROY F,DE VUYST L.Influence of complex nutrient source on growth of and curvacin A production by sausage isolate Lactobacillus curvatus LTH 1174[J].Applied and Environmental Microbiology,2004,70(9):5 081-5 088.
[11] ZHANG D L,WANG F J,YU Y,et al.Effect of quorum-sensing molecule 2-phenylethanol and ARO genes on Saccharomyces cerevisiae biofilm[J].Applied Microbiology and Biotechnology,2021,105(9):3 635-3 648.
[12] BISWAS S,MUKHERJEE P,MANNA T,et al.Quorum sensing autoinducer(s) and flagellum independently mediate EPS signaling in Vibrio cholerae through LuxO-independent mechanism[J].Microbial Ecology,2019,77(3):616-630.
[13] MALDONADO-BARRAGÁN A,WEST S A.The cost and benefit of quorum sensing-controlled bacteriocin production in Lactobacillus plantarum[J].Journal of Evolutionary Biology,2020,33(1):101-111.
[14] KAREB O,AÏDER M.Quorum sensing circuits in the communicating mechanisms of bacteria and its implication in the biosynthesis of bacteriocins by lactic acid bacteria:A review[J].Probiotics and Antimicrobial Proteins,2020,12(1):5-17.
[15] GU Y,LI B,TIAN J J,et al.The response of LuxS/AI-2 quorum sensing in Lactobacillus fermentum 2-1 to changes in environmental growth conditions[J].Annals of Microbiology,2018,68(5):287-294.
[16] YEO S,PARK H,JI Y,et al.Influence of gastrointestinal stress on autoinducer-2 activity of two Lactobacillus species[J].FEMS Microbiology Ecology,2015,91(7):fiv065.
[17] YADAV M K,SINGH B,TIWARI S K.Comparative analysis of inhibition-based and indicator-independent colorimetric assay for screening of bacteriocin-producing lactic acid bacteria[J].Probiotics and Antimicrobial Proteins,2019,11(2):687-695.
[18] LIU G R,REN L,SONG Z Q,et al.Purification and characteristics of bifidocin A,a novel bacteriocin produced by Bifidobacterium animalis BB04 from centenarians'intestine[J].Food Control,2015,50:889-895.
[19] KUBOTA H,TSUJI H,MATSUDA K,et al.Detection of human intestinal catalase-negative,Gram-positive cocci by rRNA-targeted reverse transcription-PCR[J].Applied and Environmental Microbiology,2010,76(16):5 440-5 451.
[20] MATARAGAS M,DROSINOS E H,TSAKALIDOU E,et al.Influence of nutrients on growth and bacteriocin production by Leuconostoc mesenteroides L124 and Lactobacillus curvatus L442[J].Antonie Van Leeuwenhoek,2004,85(3):191-198.
[21] PARLINDUNGAN E,DEKIWADIA C,TRAN K T M,et al.Morphological and ultrastructural changes in Lactobacillus plantarum B21 as an indicator of nutrient stress[J].LWT,2018,92:556-563.
[22] LEROY F,VANKRUNKELSVEN S,DE GREEF J,et al.The stimulating effect of a harsh environment on the bacteriocin activity by Enterococcus faecium RZS C5 and dependency on the environmental stress factor used[J].International Journal of Food Microbiology,2003,83(1):27-38.
[23] KIM W S,HALL R J,DUNN N W.The effect of nisin concentration and nutrient depletion on nisin production of Lactococcus lactis[J].Applied Microbiology and Biotechnology,1997,48(4):449-453.
[24] LEROY F,DE VUYST L.Growth of the bacteriocin-producing Lactobacillus sakei strain CTC 494 in MRS broth is strongly reduced due to nutrient exhaustion:A nutrient depletion model for the growth of lactic acid bacteria[J].Applied and Environmental Microbiology,2001,67(10):4 407-4 413.
[25] CALLEWAERT R,DE VUYST L.Bacteriocin production with Lactobacillus amylovorus DCE 471 is improved and stabilized by fed-batch fermentation[J].Applied and Environmental Microbiology,2000,66(2):606-613.
[26] SABO S S,CONVERTI A,ICHIWAKI S,et al.Bacteriocin production by Lactobacillus plantarum ST16 Pa in supplemented whey powder formulations[J].Journal of Dairy Science,2019,102(1):87-99.
[27] FAHIM H A,ROUBY W M A E,EL-GENDY A O,et al.Enhancement of the productivity of the potent bacteriocin avicin A and improvement of its stability using nanotechnology approaches[J].Scientific Reports,2017,7:10604.
[28] SIDOOSKI T,BRANDELLI A,BERTOLI S L,et al.Physical and nutritional conditions for optimized production of bacteriocins by lactic acid bacteria-A review[J].Critical Reviews in Food Science and Nutrition,2019,59(17):2 839-2 849.
[29] DUNDAR H,BREDE D A,LA ROSA S L,et al.The fsr quorum-sensing system and cognate gelatinase orchestrate the expression and processing of proprotein EF1097 into the mature antimicrobial peptide enterocin O16[J].Journal of Bacteriology,2015,197(13):2 112-2 121.
[30] ALI L,GORAYA M U,ARAFAT Y,et al.Molecular mechanism of quorum-sensing in Enterococcus faecalis:Its role in virulence and therapeutic approaches[J].International Journal of Molecular Sciences,2017,18(5):960.
[1] 张明亮, 王俊, 翁可欣, 李力, 黄建忠, 林清强. 变温调控破囊壶菌发酵生产二十二碳六烯酸[J]. 食品与发酵工业, 2022, 48(3): 15-19.
[2] 刘婷, 尹启蒙, 周滟晴, 赵帅东, 季旭, 张晓妍, 王浩鹏, 汪立平, 樊现远. 一株副溶血性弧菌拮抗菌的筛选、鉴定及其抑菌物质特性研究[J]. 食品与发酵工业, 2022, 48(1): 76-83.
[3] 胡丽丽, 董庆利, 夏阳, 张帅帅, 杨静远, 王真, 刘阳泰. 单增李斯特菌生物膜形成及其调控机制研究进展[J]. 食品与发酵工业, 2021, 47(8): 276-282.
[4] 李丽, 杨云丽, 杨小凡, 何伟, 袁恺, 朱威宇, 彭超, 何一凡, 董银卯, 周卫强. 液体发酵生产灵芝三萜酸的过程调控研究进展[J]. 食品与发酵工业, 2021, 47(8): 304-312.
[5] 徐雅晴, 唐瑶, 孙雨倩, 尹国斌, 王阳, 康振. 枯草芽孢杆菌bsrE/SR5转录后调控系统构建与优化[J]. 食品与发酵工业, 2021, 47(24): 21-27.
[6] 上官文丹, 陈松, 韩翔鹏, 刘丹, 李尧, 钟青萍. 鼠李糖乳杆菌MS1对副溶血弧菌群体感应淬灭作用的研究[J]. 食品与发酵工业, 2021, 47(24): 64-70.
[7] 刘莉颖, 宋天霖, 周艺萍, 李选文, 熊智. 青海传统发酵牦牛乳制品中乳酸菌资源发掘及评价[J]. 食品与发酵工业, 2021, 47(18): 70-76.
[8] 李旋, 王加初, 刘益宁, 蒋帅, 吴鹤云, 谢希贤. 代谢工程改造大肠杆菌生产L-丝氨酸[J]. 食品与发酵工业, 2021, 47(17): 1-7.
[9] 王俊淇, 李婷婷, 刘佳宜, 谢晶, 林洪, 励建荣. 脱氢乙酸钠对杀鲑气单胞菌群体感应现象的抑制[J]. 食品与发酵工业, 2021, 47(17): 69-75.
[10] 杨致昊, 刘畅, 窦露, 侯艳茹, 其其格, 苏琳, 赵丽华, 靳烨. Caspases的研究进展及其与肉嫩度的关联机制[J]. 食品与发酵工业, 2021, 47(17): 277-282.
[11] 颜碧, 张鹏, 贾晓昱, 段玉权, 李江阔. 微环境气体调控对磨盘柿冰温贮藏期品质的影响[J]. 食品与发酵工业, 2021, 47(11): 200-207.
[12] 桑昆昆, 刘晓凤, 熊智强, 张汇, 王光强, 宋馨, 艾连中, 夏永军. 透明质酸分子质量调控进展[J]. 食品与发酵工业, 2021, 47(11): 272-278.
[13] 石诚, 刘松, 堵国成. K+对促进甲基对硫磷水解酶催化活性的影响[J]. 食品与发酵工业, 2020, 46(6): 8-12.
[14] 郭建军, 曾静, 袁林, 魏国汶. 组成型分泌表达蛋白酶的重组粪肠球菌的构建及应用[J]. 食品与发酵工业, 2020, 46(3): 14-21.
[15] 杨慧, 步雨珊, 刘奥, 刘同杰, 张兰威, 易华西. 产细菌素植物乳杆菌Q7对酸奶后酸化及品质的影响[J]. 食品与发酵工业, 2020, 46(3): 30-35.
[1] FAN Lin-lin,FENG Xu-qiao. Effect of different treatments on storage of fresh-cut apple slices in vacuum packing[J]. Food and Fermentation Industries, 2015, 41(1): 252 .
[2] LI Ai-min et al. Effects of drying methods and grinding size on the bioactive components and smell of Maca[J]. Food and Fermentation Industries, 2018, 44(2): 121 .
[3] MENG Guo-dong;PENG Gui-lan*;LUO Chuan-wei;LI Bin;YANG Ling; ZHANG Xue-feng. Vacuum drying characteristics and kinetics modeling study of Zanthoxylum bungeanum[J]. Food and Fermentation Industries, 2018, 44(4): 89 -96 .
[4] GAO Na-na , LI Ting-ting, WANG Dang-feng, GUO Jing-wen, HUANG Jian-lian, YU Xiao-jun, DING Hao-chen, WANG Fu-qing, LI Jian-rong. Volatile components in air packaged and vacuum packaged Mirror carp during - 2 ℃ storage[J]. Food and Fermentation Industries, 2018, 44(9): 239 -246 .
[5] DING Rui-xue, WANG Yi-ran, WU Ri-na, YUE Xi-qing, LUO Xue, WU Jun-rui. Research progress on fermented milk regulating human intestinal nutrition and health[J]. Food and Fermentation Industries, 2018, 44(12): 281 -287 .
[6] TANG Chao, ZHANG Hanyu, WANG Ting, FENG Guangwen, QIAN Weidong, CAI Changlong, MAO Peihong. Differentiating transcriptomic patterns and functional analysis of Hansenula anomala during cultivation[J]. Food and Fermentation Industries, 2019, 45(4): 1 -6 .
[7] WANG Huihui, MA Jibing, LIU Xiaobo, CUI Wenbin, ZHANG Li, WEI Jinmei, YU Qunli, GUO Zhaobin. Analysis of the changes of volatile flavor compounds during processing of traditional air-dried beef in pastoral area in Gansu province[J]. Food and Fermentation Industries, 2019, 45(4): 200 -205 .
[8] CHENG Xifei, YANG Sha, CHEN Guo, ZHAO Yiping, PENG Yalin, ZHOU You, XU Li. Antibacterial activity and toxicity to human embryo kidney cells of silk fibroin peptides prepared by two kinds of enzymatic hydrolyses[J]. Food and Fermentation Industries, 2019, 45(6): 115 -121 .
[9] HEN Liang, HE Bo, KANG Wenli, WU Can, ZHOU Shangting. Research progress on the detection of flavor substances in soy sauce[J]. Food and Fermentation Industries, 2019, 45(16): 293 -298 .
[10] LI Gen, CHU Le, MA Yinfei, HE Fatao, DING Chen, ZHU Fengtao, ZHAO Yan. Research status of effect of thermal and non-thermal processing on the quality of NFC apple juice[J]. Food and Fermentation Industries, 2020, 46(6): 301 -306 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn